In this study, a comparison of different methods to predict drug-polymer solubility was carried out on binary systems consisting of five model drugs (paracetamol, chloramphenicol, celecoxib, indomethacin, and felodipine) and polyvinylpyrrolidone/vinyl acetate copolymers (PVP/VA) of different monomer weight ratios. The drug-polymer solubility at 25 °C was predicted using the Flory-Huggins model, from data obtained at elevated temperature using thermal analysis methods based on the recrystallization of a supersaturated amorphous solid dispersion and two variations of the melting point depression method. These predictions were compared with the solubility in the low molecular weight liquid analogues of the PVP/VA copolymer (N-vinylpyrrolidone and vinyl acetate). The predicted solubilities at 25 °C varied considerably depending on the method used. However, the three thermal analysis methods ranked the predicted solubilities in the same order, except for the felodipine-PVP system. Furthermore, the magnitude of the predicted solubilities from the recrystallization method and melting point depression method correlated well with the estimates based on the solubility in the liquid analogues, which suggests that this method can be used as an initial screening tool if a liquid analogue is available. The learnings of this important comparative study provided general guidance for the selection of the most suitable method(s) for the screening of drug-polymer solubility.
In this study, the influence of polymer molecular weight on drug-polymer solubility was investigated using binary systems containing indomethacin (IMC) and polyvinylpyrrolidone (PVP) of different molecular weights. The experimental solubility in PVP, measured using a differential scanning calorimetry annealing method, was compared with the solubility calculated from the solubility of the drug in the liquid analogue N-vinylpyrrolidone (NVP). The experimental solubility of IMC in the low-molecular-weight PVP K12 was not significantly different from that in the higher molecular weight PVPs (K25, K30, and K90). The calculated solubilities derived from the solubility in NVP (0.31-0.32 g/g) were found to be lower than those experimentally determined in PVP (0.38-0.40 g/g). Nevertheless, the similarity between the values indicates that the analogue solubility can provide valuable indications on the solubility in the polymer. Hence, if a drug is soluble in an analogue of the polymer, it is most likely also soluble in the polymer. In conclusion, the solubility of a given drug-polymer system is determined by the strength of the drug-polymer interactions rather than the molecular weight of the polymer. Therefore, during the first screenings for drug solubility in polymers, only one representative molecular weight per polymer is needed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.