Abstract-Living organisms are capable of autonomously adapting to dynamically changing environments by receiving inputs from highly specialized sensory organs and elaborating them on the same parallel, power-efficient neural substrate. In this paper we present a prototype for a comprehensive integrated platform that allows replicating principles of neural information processing in real-time. Our system consists of (a) an autonomous mobile robotic platform, (b) on-board actuators and multiple (neuromorphic) sensors, and (c) the SpiNNaker computing system, a configurable neural architecture for exploration of parallel, brain-inspired models. The simulation of neurally inspired perception and reasoning algorithms is performed in real-time by distributed, low-power, low-latency event-driven computing nodes, which can be flexibly configured using C or specialized neural languages such as PyNN and Nengo. We conclude by demonstrating the platform in two experimental scenarios, exhibiting real-world closed loop behavior consisting of environmental perception, reasoning and execution of adequate motor actions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.