Abstract. In this paper we describe pedagogic scenarios where the use of a video annotation tool could be of added value to the students' overall learning process. Furthermore, we introduce ViLM, a platform-independent tool for annotating videos collaboratively or on its own and how we integrated the tool in our university's LMS. Finally, we characterise potential research opportunities and learning scenarios where the tool may successfully be applied.
People are using social media to a greater extent, particularly in emergency situations. However, approaches for processing and analyzing the vast quantities of data produced currently lag far behind. In this paper we discuss important steps, and the associated challenges, for processing and analyzing social media in emergencies. In our research project EmerGent, a huge volume of low-quality messages will be continuously gathered from a variety of social media services such as Facebook or Twitter. Our aim is to design a software system that will process and analyze social media data, transforming the high volume of noisy data into a low volume of rich content that is useful to emergency personnel. Therefore, suitable techniques are needed to extract and condense key information from raw social media data, allowing detection of relevant events and generation of alerts pertinent to emergency personnel.
Virtual communities are increasingly relying on technologies and tools of the so-called Web 2.0. In the context of scientific events and topical Research Networks, researchers use Social Media as one main communication channel. This raises the question, how to monitor and analyze such Research Networks. In this chapter we argue that Artefact-Actor-Networks (AANs) serve well for modeling, storing and mining the social interactions around digital learning resources originating from various learning services. In order to deepen the model of AANs and its application to Research Networks, a relevant theoretical background as well as clues for a prototypical reference implementation are provided. This is followed by the analysis of six Research Networks and a detailed inspection of the results. Moreover, selected networks are visualized. Research Networks of the same type show similar descriptive measures while different types are not directly comparable to each other. Further, our analysis shows that narrowness of a Research Network's subject area can be predicted using the connectedness of semantic similarity networks. Finally conclusions are drawn and implications for future research are discussed.
EmerGent will use social media to support the management of large scale emergencies. The project includes the construction of a big online store of data which will be continuously mined to provide emergency information and alerts. The overall objective is a stronger connection between citizens and emergency management authorities through social media.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.