Implicit particle filters for data assimilation update the particles by first choosing probabilities and then looking for particle locations that assume them, guiding the particles one by one to the high probability domain. We provide a detailed description of these filters, with illustrative examples, together with new, more general, methods for solving the algebraic equations and with a new algorithm for parameter identification.
Particle filters may suffer from degeneracy of the particle weights. For the simplest “bootstrap” filter, it is known that avoiding degeneracy in large systems requires that the ensemble size must increase exponentially with the variance of the observation log-likelihood. The present article shows first that a similar result applies to particle filters using sequential importance sampling and the optimal proposal distribution and, second, that the optimal proposal yields minimal degeneracy when compared to any other proposal distribution that depends only on the previous state and the most recent observations. Thus, the optimal proposal provides performance bounds for filters using sequential importance sampling and any such proposal. An example with independent and identically distributed degrees of freedom illustrates both the need for exponentially large ensemble size with the optimal proposal as the system dimension increases and the potentially dramatic advantages of the optimal proposal relative to simpler proposals. Those advantages depend crucially on the magnitude of the system noise.
Implicit particle filters for data assimilation generate high-probability samples by representing each particle location as a separate function of a common reference variable. This representation requires that a certain underdetermined equation be solved for each particle and at each time an observation becomes available. We present a new implementation of implicit filters in which we find the solution of the equation via a random map. As examples, we assimilate data for a stochastically driven Lorenz system with sparse observations and for a stochastic Kuramoto-Sivashinski equation with observations that are sparse in both space and time.
TitleThe decoupling of damped linear systems in oscillatory free vibration AbstractThe purpose of this paper is to extend classical modal analysis to decouple any viscously damped linear system in oscillatory free vibration. Based upon an exposition of how viscous damping causes phase drifts in the components of a linear system, the concept of non-classically damped modes of vibration is introduced. These damped modes are real and physically excitable. By synchronizing the phase angles in each damped mode, a time-varying transformation is constructed to decouple damped oscillatory free vibration. The decoupling procedure devised herein reduces to classical modal analysis for systems that are undamped or classically damped. This paper constitutes the first part of a solution to the ''classical decoupling problem'' of linear systems. r
a b s t r a c tThe purpose of this paper is to extend classical modal analysis to decouple any viscously damped linear system in non-oscillatory free vibration or in forced vibration. Based upon an exposition of how exponential decay in a system can be regarded as imaginary oscillations, the concept of damped modes of imaginary vibration is introduced. By phase synchronization of these real and physically excitable modes, a time-varying transformation is constructed to decouple non-oscillatory free vibration. When time drifts caused by viscous damping and by external excitation are both accounted for, a time-varying decoupling transformation for forced vibration is derived. The decoupling procedure devised herein reduces to classical modal analysis for systems that are undamped or classically damped. This paper constitutes the second and final part of a solution to the ''classical decoupling problem.'' Together with an earlier paper, a general methodology that requires only the solution of a quadratic eigenvalue problem is developed to decouple any damped linear system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.