Abstract. A robust finite volume method for viscoelastic flow analysis on general unstructured meshes is developed. It is built upon a general-purpose stabilization framework for high Weissenberg number flows. The numerical framework provides full combinatorial flexibility between different kinds of rheological models on the one hand, and effective stabilization methods on the other hand. A special emphasis is put on the velocity-stress-coupling on co-located computational grids. Using special face interpolation techniques, a semi-implicit stress interpolation correction is proposed to correct the cell-face interpolation of the stress in the divergence operator of the momentum balance. Investigating the entry-flow problem of the 4:1 contraction benchmark, we demonstrate that the numerical methods are robust over a wide range of Weissenberg numbers and significantly alleviate the high Weissenberg number problem. The accuracy of the results is evaluated in a detailed mesh convergence study.
An extended volume of fluid method is developed for two-phase direct numerical simulations of systems with one viscoelastic and one Newtonian phase. A complete set of governing equations is derived by conditional volume-averaging of the local instantaneous bulk equations and interface jump conditions. The homogeneous mixture model is applied for the closure of the volume-averaged equations. An additional interfacial stress term arises in this volume-averaged formulation which requires special treatment in the finite-volume discretization on a general unstructured mesh. A novel numerical scheme is proposed for the second-order accurate finite-volume discretization of the interface stress term. We demonstrate that this scheme allows for a consistent treatment of the interface stress and the surface tension force in the pressure equation of the segregated solution approach. Because of the high Weissenberg number problem, an appropriate stabilization approach is applied to the constitutive equation of the viscoelastic phase to increase the robustness of the method at higher fluid elasticity. Direct numerical simulations of the transient motion of a bubble rising in a quiescent viscoelastic fluid are performed for the purpose of experimental code validation. The well-known jump discontinuity in the terminal bubble rise velocity when the bubble volume exceeds a critical value is captured by the method. The formulation of the interfacial stress together with the novel scheme for its discretization is found crucial for the quantitatively correct prediction of the jump discontinuity in the terminal bubble rise velocity.Key words and phrases. Viscoelastic liquid, rising bubble, extended volume of fluid method, velocity jump discontinuity, negative wake.
Many technical processes involve viscoelastic flows, which makes the subject interesting for CFD. Despite the complex fluid rheology and related numerical problems in solving the constitutive equations, recent stabilization approaches allow for a robust simulation of viscoelastic flows in the technical relevant range at high degrees of fluid elasticity. A recent general-purpose numerical stabilization framework, based on the finite-volume method of OpenFOAM is presented and its capability for the robust simulation of viscoelastic single-, as well as two-phase flows is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.