Visual pigments, oil droplets and photoreceptor types in the retinas of four species of true chameleons have been examined by microspectrophotometry. The species occupy different photic environments: two species of Chamaeleo are from Madagascar and two species of Furcifer are from Africa and the Arabian Peninsula. In addition to double cones, four spectrally distinct classes of single cone were identified. No rod photoreceptors were observed. The visual pigments appear to be mixtures of rhodopsins and porphyropsins. Double cones contained a pale oil droplet in the principle member and both outer segments contained a long-wave-sensitive visual pigment with a spectral maximum between about 555 nm and 610 nm, depending on the rhodopsin/porphyropsin mixture. Long-wave-sensitive single cones contained a visual pigment spectrally identical to the double cones, but combined with a yellow oil droplet. The other three classes of single cone contained visual pigments with maxima at about 480-505, 440-450 and 375-385 nm, combined with yellow, clear and transparent oil droplets respectively. The latter two classes were sparsely distributed. The transmission of the lens and cornea of C. dilepis was measured and found to be transparent throughout the visible and near ultraviolet, with a cut off at about 350 nm.
Objective: To evaluate the effect of strategies to reduce the spread of simulated aerosol during chest compressions on manikin and cadaver experimental models.Methods: To evaluate aerosol-spread we nebulized ultraviolet sensitive detergents into the artificial airway of a resuscitation dummy and performed CPR. The spread of the visualized aerosol was documented by a camera. In a further approach we applied nebulized detergents into the airways of human cadavers and detected the simulated spread on the same way. Among others we did recordings with undergoing compression-only-CPR, with a surgical mask or an oxygen mask on the patients face and with an inserted supraglottic airway device with and without a connected airway filter.Results: Most aerosol-spread at the direction of the provider was visualized during compression-only-CPR. The use of a surgical mask and of an oxygen mask on the patient's face deflected the spread. Inserting a supraglottic airway device connected to an airway filter lead to a remarkable reduction of aerosol-spread. Conclusion:The early insertion of a supraglottic airway device connected to an airway filter before starting chest compression may be beneficial for staff protection during CPR.
Chameleons have a number of unusual, highly specialised visual features, including telescopic visual optics with a reduced lens power, wide separation of the eye's nodal point from the axis of rotation, a deep-pit fovea, rapid pre-calculated strikes for prey based on monocular depth judgements (including focus), and a complex pattern of partially independent alternating eye movements. The same set of features has been acquired independently by a teleost, the sandlance Limnichthyes fasciatus. Despite its underwater lifestyle, this fish displays visual behaviour and rapid strikes for prey that are remarkably similar to those of the chameleon [1]. In a direct comparison of the two species, we have revealed other, previously unsuspected, similarities, such as corneal accommodation, which was unknown in teleosts, as well as bringing together, for the first time, data collected from both species. The sandlance is the only teleost, among thousands studied, that has corneal refraction, corneal accommodation and reduced lens power, as well as sharing the other specialised optical features seen in chameleons. The independent eye movement pattern in the sandlance is also unusual and similar to that of the chameleon. The selection pressures that have produced this remarkable example of convergence may relate to common visual constraints in the life styles of these two phylogenetically disparate species.
The mechanism and stimulation of the accommodative reflex in vertebrate eyes are reviewed. Except for lampreys, accommodation is brought about by intraocular muscles that mediate either a displacement or deformation of the lens, a change of the corneal radius of curvature or a combination of these mechanisms. Elasmobranchs have little accommodation and are emmetropic in water rather than hyperopic as commonly stated. Accommodation in teleosts and amphibians is well understood and achieved by lens displacement. The accommodative mechanism of amniotes is of considerable diversity and reflects different lifestyles rather than phylogenetical relationships. In all amniotes, the ciliary muscle never has a direct impact on the lens. It relaxes the tension applied to the lens by zonular fibers and/or ligaments. In birds and reptiles the ciliary muscle is usually split into two parts, of which the anterior portion changes the corneal radius of curvature. The deformation of the lens is generally achieved either by its own elasticity (humans, probably other mammals and sauropsids) or by the force of circular muscle fibers in the iris (reptiles, birds, aquatic mammals). In the second part of the paper, some of the current hypotheses about the accommodative stimulus are reviewed together with physiological response characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.