Highlights d Surround inhibition contributes to color opponency in fly photoreceptor axons d This inhibition is mediated by the horizontal-cell-like medulla interneuron Dm9 d The resulting circuit produces an efficient representation of chromatic information d A biologically constrained model predicts a complex spatiochromatic receptive field
Spectral information is commonly processed in the brain through generation of antagonistic responses to different wavelengths. In many species, these color opponent signals arise as early as photoreceptor terminals. Here, we measure the spectral tuning of photoreceptors in Drosophila. In addition to a previously described pathway comparing wavelengths at each point in space, we find a horizontal-cell-mediated pathway similar to that found in mammals.This pathway enables additional spectral comparisons through lateral inhibition, expanding the range of chromatic encoding in the fly. Together, these two pathways enable optimal decorrelation of photoreceptor signals. A biologically constrained model accounts for our findings and predicts a spatio-chromatic receptive field for fly photoreceptor outputs, with a color opponent center and broadband surround. This dual mechanism combines motifs of both an insect-specific visual circuit and an evolutionarily convergent circuit architecture, endowing flies with the unique ability to extract chromatic information at distinct spatial resolutions.
Highlights d Neural inputs to Drosophila motion detector T5 are state and stimulus dependent d Their temporal responses are more biphasic in certain conditions d T5 responses can be explained by linear summation of state/ stimulus-dependent input d A biologically constrained model predicts T5 motion responses across conditions
Colour vision represents a vital aspect of perception that ultimately enables a wide variety of species to thrive in the natural world. However, unified methods for constructing chromatic visual stimuli in a laboratory setting are lacking. Here, we present stimulus design methods and an accompanying programming package to efficiently probe the colour space of any species in which the photoreceptor spectral sensitivities are known. Our hardware-agnostic approach incorporates photoreceptor models within the framework of the principle of univariance. This enables experimenters to identify the most effective way to combine multiple light sources to create desired distributions of light, and thus easily construct relevant stimuli for mapping the colour space of an organism. We include methodology to handle uncertainty of photoreceptor spectral sensitivity as well as to optimally reconstruct hyperspectral images given recent hardware advances. Our methods support broad applications in colour vision science and provide a framework for uniform stimulus designs across experimental systems.
This article is part of the theme issue ‘Understanding colour vision: molecular, physiological, neuronal and behavioural studies in arthropods’.
Sensory systems dynamically optimize their processing properties in order to process a wide range of environmental and behavioral conditions. However, attempts to infer the function of these systems via modeling often treat system components as having static processing properties. This is particularly evident in the Drosophila motion detection circuit, where the core algorithm for motion detection is still debated, and where inputs to motion detecting neurons remain underdescribed. Using whole-cell patch clamp electrophysiology, we measured the state- and stimulus-dependent filtering properties of inputs to the OFF motion-detecting T5 cell in Drosophila. Simply summing these inputs within the framework of a connectomic-constrained model of the circuit demonstrates that changes in the shape of input temporal filters are sufficient to explain conflicting theories of T5 function. Therefore, with our measurements and our model, we reconcile motion computation with the anatomy of the circuit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.