Information on physiological rates and tolerances helps one gain a cause-and-effect understanding of the role that some environmental (bottom-up) factors play in regulating the seasonality and productivity of key species. We combined the results of laboratory experiments on reproductive success and field time series data on adult abundance to explore factors controlling the seasonality of Acartia spp., Eurytemora affinis and Temora longicornis, key copepods of brackish, coastal and temperate environments. Patterns in laboratory and field data were discussed using a metabolic framework that included the effects of 'controlling', 'masking' and 'directive' environmental factors. Over a 5-year period, changes in adult abundance within two south-west Baltic field sites (Kiel Fjord Pier, 54°19 0 89N, 10°09 0 06E, 12-21 psu, and North/Baltic Sea Canal NOK, 54°20 0 45N, 9°57 0 02E, 4-10 psu) were evaluated with respect to changes in temperature, salinity, day length and chlorophyll a concentration. Acartia spp. dominated the copepod assemblage at both sites (up to 16,764 and 21,771 females m -3 at NOK and Pier) and was 4 to 10 times more abundant than E. affinis (to 2,939 m -3 at NOK) and T. longicornis (to 1,959 m -3 at Pier), respectively. Species-specific salinity tolerance explains differences in adult abundance between sampling sites whereas phenological differences among species are best explained by the influence of species-specific thermal windows and prey requirements supporting survival and egg production. Multiple intrinsic and extrinsic (environmental) factors influence the production of different egg types (normal and resting), regulate life-history strategies and influence match-mismatch dynamics.
The Greifswalder Bodden (GWB) is considered to be the most important spawning and nursery area for the western Baltic spring-spawning herring. However, the biotic and abiotic reasons for this are still unclear. Consequently, we investigated larval growth conditions in the GWB and in the Kiel Canal (KC), another nursery and spawning area of Baltic herring. We investigated prey quantity and quality [copepod abundance and essential fatty acid (EFA) concentration] as well as biochemically derived growth rates and fatty acid content of larval herring in spring 2011. A significant correlation between larval growth and larval EFA concentration could be observed in the GWB. The highest growth rates and EFA concentrations in the larval herring coincided with high food quality. Compensating effects of food quality on food quantity and vice versa could be observed in both the GWB and the KC. While larval growth rates in the KC were high early in the season, highest growth rates in the GWB were achieved late in the season. In conclusion, neither area was superior to the other, indicating similar growth conditions for larval herring within the region.
Food-limited growth of larval fish, defined as growth rates lower than observed in other habitats or from laboratory experiments at a given temperature, is rarely reported in field studies. This would imply that either larval fishes are living in an environment characterized by plenty of food, that nutritional condition selective mortality (i.e., eliminating the weak) is very strong, or this impression is caused by misinterpretation of data concerning e.g., poor taxonomical resolution of potential prey items, i.e., total potential prey abundance is high, but positively selected food is actually scarce. We analyzed RNA:DNA derived growth rates of herring larvae (Clupea harengus L.) and taxonomically differentiated prey field data of six consecutive spring seasons from the Kiel Canal, an artificial waterway in northern Germany, in order to test if food-limited growth in larval fish can occur recurrently in coastal habitats. In all years analyzed, larval growth rates decreased simultaneously with prey abundance at the end of each larval season. Furthermore, larval growth rates were observed to be lower than mean growth rates observed in another herring larvae nursery area at temperatures above 15 °C. Asymptotic relationships between prey abundance and larval growth rates were observed, further supporting the hypothesis of food-limitation. As larval growth was best explained by the abundance of the numerically dominant calanoid copepod Eurytemora affinis, the paramount importance of the dominant prey item is highlighted. We conclude that food limitation can be a severe and re-occurring issue for larval fish in coastal habitats, and that certain prey items play a crucial role in determining larval growth rates, and therefore potentially recruitment.
Diet composition of the expanding southern species European anchovy Engraulis encrasicolus in the western Baltic Sea was investigated. Results revealed an interesting case of bentho-pelagic coupling with potential implications for local fish species through competition for food resources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.