The flow metalation of various arenes and heteroarenes involving an in situ trapping with metal salts (ZnCl2 ⋅2 LiCl, MgCl2 , CuCN⋅2 LiCl, LaCl3 ⋅2 LiCl) under very convenient conditions (0 °C, 40 s) is reported. The resulting Mg, Zn, Cu, or La organic species are trapped with various electrophiles in high yields. In several cases, unusual kinetically controlled regioselectivities are obtained. All these flow metalations can be scaled up simply by extending the reaction time and without further optimization. The reaction scope of such flow metalations is considerably broader than that of the corresponding batch procedures.
A flow procedure for the metalation of functionalized heterocycles (pyridines, pyrimidines, thiophenes, and thiazoles) and various acrylates using the strong, non-nucleophilic base TMPMgCl⋅LiCl is reported. The flow conditions allow the magnesiations to be performed under more convenient conditions than the comparable batch reactions, which often require cryogenic temperatures and long reaction times. Moreover, the flow reactions are directly scalable without further optimization. Metalation under flow conditions also allows magnesiations that did not produce the desired products under batch conditions, such as the magnesiation of sensitive acrylic derivatives. The magnesiated species are subsequently quenched with various electrophiles, thereby introducing a broad range of functionalities.
Dependent on the application or characterization method catalysts are exposed to different gas pressures, which results in different structures. The quantitative determination of the structure and composition of a catalyst as a function of its gas environment allows the establishment of structure−performance relationships. Herein, we determine the structure of a platinum− titania catalyst under hydrogen during temperature-programmed reduction over 3 orders of magnitude in pressure, from 1 to 950 mbar. The pressure significantly influences the hydrogen uptake kinetics and the consecutive structural transformations of the platinum−titania catalyst. The reduction of the platinum precursor becomes pressure-independent above 30 mbar. Yet, the related spillover and stability of adsorbed hydrogen on the titania are a function of pressure. Higher pressures promote higher hydrogen uptake and prevent desorption of hydrogen from the catalyst. The hydrogen uptake triggers a phase transformation of anatase to rutile which is, as a result, pressure dependent. The presented systematic approach establishes a pressure−structure relation which can be applied for the catalyst treatment and to frame existing results on the catalytic system. Treating the same material at two different pressures will lead to different structures.
An ambient temperature continuous flow method for nucleophilic amidation and thioamidation is described. Deprotonation of formamides by lithium diisopropylamine (LDA) affords carbamoyllithium intermediates that are quenched in situ with various electrophiles such as ketones, allyl bromides, Weinreb and morpholino amides. The nature of the reactive lithium intermediates and the thermodynamics of the metalation were further investigated by ab initio calculations and kinetic experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.