Relaxin, a peptide hormone secreted by the corpus luteum during pregnancy, exerts actions on reproductive tissues such as the pubic symphysis, uterus, and cervix. It may also influence body fluid balance by actions on the brain to stimulate thirst and vasopressin secretion. We mapped the sites in the brain that are activated by i.v. infusion of a dipsogenic dose of relaxin (25 g͞h) by immunohistochemically detecting Fos expression. Relaxin administration resulted in increased Fos expression in the subfornical organ (SFO), organum vasculosum of the lamina terminalis (OVLT), median preoptic nucleus, and magnocellular neurons in the supraoptic and paraventricular nuclei. Ablation of the SFO abolished relaxininduced water drinking, but did not prevent increased Fos expression in the OVLT, supraoptic or paraventricular nuclei. Although ablation of the OVLT did not inhibit relaxin-induced drinking, it did cause a large reduction in Fos expression in the supraoptic nucleus and posterior magnocellular subdivision of the paraventricular nucleus. In vitro single-unit recording of electrical activity of neurons in isolated slices of the SFO showed that relaxin (10 ؊7 M) added to the perfusion medium caused marked and prolonged increase in neuronal activity. Most of these neurons also responded to 10 ؊7 M angiotensin II. The data indicate that bloodborne relaxin can directly stimulate neurons in the SFO to initiate water drinking. It is likely that circulating relaxin also stimulates neurons in the OVLT that influence vasopressin secretion. These two circumventricular organs that lack a blood-brain barrier may have regulatory influences on fluid balance during pregnancy in rats.R elaxin is a peptide hormone secreted by the corpus luteum of the ovary during pregnancy. Relaxin acts on reproductive tissues such as the pubic symphysis, uterus, and cervix (1, 2), but it may also influence the brain (3). Evidence of this influence is presented in reports that the intracerebroventricular (i.c.v.) (1) injection of relaxin results in stimulation of oxytocin and vasopressin secretion, water drinking, and a pressor response (3-8). i.c.v. administration of relaxin also stimulates increased expression of c-fos in groups of neurons in the supraoptic nucleus (SON) and hypothalamic paraventricular nucleus (PVN), as well as in the subfornical organ (SFO), median preoptic nucleus (MnPO), and organum vasculosum of the lamina terminalis (OVLT) (9). Circulating relaxin probably has endocrine actions on the brain, because high-affinity-binding sites for relaxin are present in the SFO and OVLT of the rat (10), two brain regions that are accessible to circulating relaxin because they lack a blood-brain barrier (11). Also, i.v. infusion of relaxin causes vasopressin secretion and water drinking in the rat, effects that may be mediated through brain angiotensinergic mechanisms (12,13). Evidence that relaxin [together with other hormones such as angiotensin II (Ang II) and vasopressin] plays a physiological role in regulating body fluid homeostasis d...
Amylin, a peptide hormone secreted by pancreatic β-cells after food intake, contributes to metabolic control by regulating nutrient influx into the blood, whereas insulin promotes nutrient efflux and storage. We now report that amylin activates neurons in the subfornical organ (SFO), a structure in which the lack of a functional blood-brain barrier and the presence of a high density of amylin receptors may render it accessible and sensitive to circulating amylin. In an in vitro slice preparation of the rat SFO, 73% of 78 neurons were excited by superfusion with rat amylin (10−8–10−7M); the remainder were insensitive. The threshold concentration for the excitatory response of amylin was <10−8 M and thus similar in potency to a previously reported excitatory effect of ANG II on the same neurons. The excitatory effect of amylin was completely blocked by coapplication of the selective amylin receptor antagonist AC-187 (10−6–10−5M) but was not affected by losartan (10−5 M). Subcutaneous injections of 40 nmol of amylin significantly increased water intake in euhydrated rats, as did an equimolar dose of ANG II, which is a well-described SFO-mediated effect of circulating ANG II. These results point to the SFO as a sensory central nervous target for amylin released systemically in response to metabolic changes. Furthermore, we suggest that amylin release during food intake may stimulate prandial drinking.
The activation of neurons in the subfornical organ (SFO) by angiotensin II (AngII) is well established and is widely regarded as the basis for the AngII-induced increase in water intake. Application of the nitric oxide (NO) donor sodium nitroprusside (SNP) led to an inhibition of the spontaneous electrical activity in 96% of the neurons sensitive for SNP (n = 50). In addition, the firing rate in 60% of the neurons inhibited by SNP decreased in response to superfusion with the natural substrate of the NO synthase (NOS) L-arginine whereas 70% increased their frequency after application of the NOS blocker NG-monomethyl-L-arginine (L-NMMA; n = 10). The inhibitory effect of SNP could be mimicked by application of membrane-permeable 8-Br-cGMP. The presence of nNOS, the neuronal isoform of NOS, was demonstrated immunocytochemically and using the NADPH-diaphorase technique on SFO slices. Using a highly selective antibody against cGMP in formaldehyde-fixed tissue, the NO donors SNP, 3-morpholinosydnonimine (SIN-1), and S-nitroso-N-acetyl-DL-penicillamine (SNAP) caused a strong increase in cGMP formation when applied under the same conditions as used for the electrophysiological recordings. These electrophysiological results suggest an important role for NO in SFO-mediated responses and offer a plausible explanation for the in vivo-observed opposite effects of AngII and NO on water intake.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.