Because the correlation coefficient for HPLC-B and BCF is very similar to that found for HPLC-B and laboratory TSB, BC could be used not only as a screening device but also as a reliable substitute of TSB determination. At higher levels of TSB, in which phototherapy and/or exchange transfusion might be considered, BC performed slightly better than the laboratory. The accuracy and precision of the TcB measurement in this study was observed to be comparable to the standard of care laboratory test.
Roughly 90% of the gas-exchange surface is formed by alveolarization of the lungs. To the best of our knowledge, the formation of new alveoli has been followed in rats only by means of morphological description or interpretation of semiquantitative data until now. Therefore, we estimated the number of alveoli in rat lungs between postnatal days 4 and 60 by unambiguously counting the alveolar openings. We observed a bulk formation of new alveoli between days 4 and 21 (17.4 times increase from 0.8 to 14.3 millions) and a second phase of continued alveolarization between days 21 and 60 (1.3 times increase to 19.3 million). The (number weighted) mean volume of the alveoli decreases during the phase of bulk alveolarization from ∼593,000 μm(3) at day 4 to ∼141,000 μm(3) at day 21, but increases again to ∼298,000 μm(3) at day 60. We conclude that the "bulk alveolarization" correlates with the mechanism of classical alveolarization (alveolarization before the microvascular maturation is completed) and that the "continued alveolarization" follows three proposed mechanisms of late alveolarization (alveolarization after microvascular maturation). The biphasic pattern is more evident for the increase in alveolar number than for the formation of new alveolar septa (estimated as the length of the free septal edge). Furthermore, a striking negative correlation between the estimated alveolar size and published data on retention of nanoparticles was detected.
Newborns are particularly susceptible to bacterial infections due to qualitative and quantitative deficiencies of the neonatal innate immune system. However, the mechanisms underlying these deficiencies are poorly understood. Given that fetuses are exposed to high concentrations of estradiol and progesterone during gestation and at time of delivery, we analyzed the effects of these hormones on the response of neonatal innate immune cells to endotoxin, bacterial lipopeptide, and Escherichia coli and group B Streptococcus, the two most common causes of early-onset neonatal sepsis. Here we show that at concentrations present in umbilical cord blood, estradiol and progesterone are as powerful as hydrocortisone for inhibition of cytokine production by cord blood mononuclear cells (CBMCs) and newborn monocytes. Interestingly, CBMCs and newborn monocytes are more sensitive to the effects of estradiol and progesterone than adult peripheral blood mononuclear cells and monocytes. This increased sensitivity is associated with higher expression levels of estrogen and membrane progesterone receptors but is independent of a downregulation of Toll-like receptor 2 (TLR2), TLR4, and myeloid differentiation primary response gene 88 in newborn cells. Estradiol and progesterone mediate their anti-inflammatory activity through inhibition of the NF-B pathway but not the mitogenactivated protein kinase pathway in CBMCs. Altogether, these results suggest that elevated umbilical cord blood concentrations of estradiol and progesterone acting on mononuclear cells expressing high levels of steroid receptors contribute to impair innate immune responses in newborns. Therefore, intrauterine exposure to estradiol and progesterone may participate in increasing susceptibility to infection during the neonatal period.Newborns are at high risk of severe bacterial infections. Early-onset neonatal sepsis occurs during the first week of life in 1 to 5 per 1,000 births (14,24,25). Group B Streptococcus (GBS) and Escherichia coli are involved in more than 50% of episodes of early-onset neonatal sepsis. Despite antimicrobial therapy and improvements in neonatal intensive care, the mortality due to neonatal sepsis remains high (5 to 15%) and survivors are at risk of permanent neurologic damage (14,24,25). The particularly high susceptibility to infection during the neonatal period has been associated with quantitative and qualitative deficiencies of innate immunity (such as reduced levels of opsonins, decreased cytokine production, and impaired function of phagocytes) and adaptive immunity (such as impaired function of antigen-presenting cells and T cells and decreased production of immunoglobulins) (1,19,36). Although the differences between the neonatal and adult immune responses are relatively well described, the underlying mechanisms that account for the decreased ability of newborns to mount efficient immune responses remain largely unknown.Fetuses are chronically exposed to high levels of steroid hormones due to placental production. Concentrations ...
Pregnancies of both type 1 and 2 diabetes carry an increased risk for foetal development of PVH compared with those with GD. The insufficient effect of preventive glycaemia controls leads to conclude that although no definite predictive parameters for malignant outcome can be presented, close monitoring of these pregnancies may prevent perinatal catastrophes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.