Colonization of the intestinal tract and dissemination into deeper tissues by the enteric pathogen Yersinia pseudotuberculosis demands expression of a special set of virulence factors important for the initiation and the persistence of the infection. In this study we demonstrate that many virulence-associated functions are coregulated with the carbohydrate metabolism. This link is mediated by the carbon storage regulator (Csr) system, including the regulatory RNAs CsrB and CsrC, and the cAMP receptor protein (Crp), which both control virulence gene expression in response to the nutrient composition of the medium. Here, we show that Crp regulates the synthesis of both Csr RNAs in an opposite manner. A loss of the crp gene resulted in a strong upregulation of CsrB synthesis, whereas CsrC levels were strongly reduced leading to downregulation of the virulence regulator RovA. Switching of the Csr RNA involves Crp-mediated repression of the response regulator UvrY which activates csrB transcription. To elucidate the regulatory links between virulence and carbon metabolism, we performed comparative metabolome, transcriptome, and phenotypic microarray analyses and found that Crp promotes oxidative catabolism of many different carbon sources, whereas fermentative patterns of metabolism are favored when crp is deleted. Mouse infection experiments further demonstrated that Crp is pivotal for a successful Y. pseudotuberculosis infection. In summary, placement of the Csr system and important virulence factors under control of Crp enables this pathogen to link its nutritional status to virulence in order to optimize biological fitness and infection efficiency through the infectious life cycle.
c Enterococcus faecalis has emerged as an important cause of life-threatening multidrug-resistant bacterial infections in the hospital setting. The pathogenesis of enterococcal infections has remained a relatively neglected field despite their obvious clinical relevance. The objective of this study was to characterize the interactions between mast cells (MCs), an innate immune cell population abundant in the intestinal lamina propria, and E. faecalis. This study was conducted with primary bone marrow-derived murine MCs. The results demonstrated that MCs exerted an antimicrobial effect against E. faecalis that was mediated both by degranulation, with the concomitant discharge of the antimicrobial effectors contained in the granules, and by the release of extracellular traps, in which E. faecalis was snared and killed. In particular, the cathelicidin LL-37 released by the MCs had potent antimicrobial effect against E. faecalis. We also investigated the specific receptors involved in the recognition of E. faecalis by MCs. We found that Toll-like receptors (TLRs) are critically involved in the MC recognition of E. faecalis, since MCs deficient in the expression of MyD88, an adaptor molecule required for signaling by most TLRs, were significantly impaired in their capacity to degranulate, to reduce E. faecalis growth as well as to release tumor necrosis factor alpha (TNF-␣) and interleukin 6 (IL-6) after encountering this pathogen. Furthermore, TLR2 was identified as the most prominent TLR involved in the recognition of E. faecalis by MCs. The results of this study indicate that MCs may be important contributors to the host innate immune defenses against E. faecalis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.