It is commonly believed that race is perceived through another's facial features, such as skin color. In the present research, we demonstrate that cues to social status that often surround a face systematically change the perception of its race. Participants categorized the race of faces that varied along White–Black morph continua and that were presented with high-status or low-status attire. Low-status attire increased the likelihood of categorization as Black, whereas high-status attire increased the likelihood of categorization as White; and this influence grew stronger as race became more ambiguous (Experiment 1). When faces with high-status attire were categorized as Black or faces with low-status attire were categorized as White, participants' hand movements nevertheless revealed a simultaneous attraction to select the other race-category response (stereotypically tied to the status cue) before arriving at a final categorization. Further, this attraction effect grew as race became more ambiguous (Experiment 2). Computational simulations then demonstrated that these effects may be accounted for by a neurally plausible person categorization system, in which contextual cues come to trigger stereotypes that in turn influence race perception. Together, the findings show how stereotypes interact with physical cues to shape person categorization, and suggest that social and contextual factors guide the perception of race.
Robotic Development Environments (RDEs) have come to play an increasingly important role in robotics research in general, and for the development of architectures for mobile robots in particular. Yet, no systematic evaluation of available RDEs has been performed; establishing a comprehensive list of evaluation criteria targeted at robotics applications is desirable that can subsequently be used to compare their strengths and weaknesses. Moreover, there are no practical evaluations of the usability and impact of a large selection of RDEs that provides researchers with the information necessary to select an RDE most suited to their needs, nor identifies trends in RDE research that suggest directions for future RDE development.This survey addresses the above by selecting and describing nine open source, freely available RDEs for mobile robots, evaluating and comparing them from various points of view. First, based on previous work concerning agent systems, a conceptual framework of four broad categories is established, encompassing the characteristics and capabilities that an RDE supports. Then, a practical evaluation of RDE usability in designing, implementing, and executing robot architectures is presented. Finally, the impact of specific RDEs on the field of robotics is addressed by providing a list of published applications and research projects that give concrete examples of areas in which systems have been used. The comprehensive evaluation and comparison of the nine RDEs concludes with suggestions of how to use the results J. Kramer ( ) · M. Scheutz
The uncanny valley has become synonymous with the uneasy feeling of viewing an animated character or robot that looks imperfectly human. Although previous uncanny valley experiments have focused on relations among a character's visual elements, the current experiment examines whether a mismatch in the human realism of a character's face and voice causes it to be evaluated as eerie. The results support this hypothesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.