Antibiotic resistance poses rapidly increasing global problems in combatting multidrug-resistant (MDR) infectious diseases like MDR tuberculosis, prompting for novel approaches including host-directed therapies (HDT). Intracellular pathogens like Salmonellae and Mycobacterium tuberculosis (Mtb) exploit host pathways to survive. Only very few HDT compounds targeting host pathways are currently known. In a library of pharmacologically active compounds (LOPAC)-based drug-repurposing screen, we identify multiple compounds, which target receptor tyrosine kinases (RTKs) and inhibit intracellular Mtb and Salmonellae more potently than currently known HDT compounds. By developing a data-driven in silico model based on confirmed targets from public databases, we successfully predict additional efficacious HDT compounds. These compounds target host RTK signaling and inhibit intracellular (MDR) Mtb. A complementary human kinome siRNA screen independently confirms the role of RTK signaling and kinases (BLK, ABL1, and NTRK1) in host control of Mtb. These approaches validate RTK signaling as a drugable host pathway for HDT against intracellular bacteria.
Recent evidence indicates that shRNAs with a relatively short basepaired stem do not require Dicer processing, but instead are processed by the Argonaute 2 protein (Ago2). We named these molecules AgoshRNAs as both their processing and silencing function are mediated by Ago2. This alternative processing yields only a single RNA guide strand, which can avoid off-target effects induced by the passenger strand of regular shRNAs. It is important to understand this alternative processing route in mechanistic detail such that one can design improved RNA reagents. We verified that AgoshRNAs trigger site-specific cleavage of a complementary mRNA. Second, we document the importance of the identity of the 5΄-terminal nucleotide and its basepairing status for AgoshRNA activity. AgoshRNA activity is significantly reduced or even abrogated with C or U at the 5΄-terminal and is enhanced by introduction of a bottom mismatch and 5΄-terminal nucleotide A or G. The 5΄-terminal RNA nucleotide also represents the +1 position of the transcriptional promoter in the DNA, thus further complicating the analysis. Indeed, we report that +1 modification affects the transcriptional efficiency and accuracy of start site selection, with A or G as optimal nucleotide. These combined results allow us to propose general rules for the design and expression of potent AgoshRNA molecules.
Chikungunya virus (CHIKV) is an arthropod-borne reemerging human pathogen that generally causes a severe persisting arthritis. Since 2005, the virus has infected millions of people during outbreaks in Africa, Indian Ocean Islands, Asia, and South/Central America. Many steps of the replication and expression of CHIKV's 12-kb RNA genome are highly dependent on cellular factors, which thus constitute potential therapeutic targets. SILAC and LC-MS/MS were used to define the temporal dynamics of the cellular response to infection. Using samples harvested at 8, 10, and 12 h postinfection, over 4700 proteins were identified and per time point 2800-3500 proteins could be quantified in both biological replicates. At 8, 10, and 12 h postinfection, 13, 38, and 106 proteins, respectively, were differentially expressed. The majority of these proteins showed decreased abundance. Most subunits of the RNA polymerase II complex were progressively degraded, which likely contributes to the transcriptional host shut-off observed during CHIKV infection. Overexpression of four proteins that were significantly downregulated (Rho family GTPase 3 (Rnd3), DEAD box helicase 56 (DDX56), polo-like kinase 1 (Plk1), and ubiquitin-conjugating enzyme E2C (UbcH10) reduced susceptibility of cells to CHIKV infection, suggesting that infection-induced downregulation of these proteins is beneficial for CHIKV replication. All MS data have been deposited in the ProteomeXchange with identifier PXD001330 (http://proteomecentral.proteomexchange.org/dataset/PXD001330).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.