Receiver implementations with very low quantization resolution will play an important role in 5G, as high precision quantization and signal processing are costly in terms of computational resources and chip area. Therefore, low resolution receivers with quasi optimum performance will be required to meet complexity and latency constraints. The Information Bottleneck method allows for a novel, information centric approach to design such receivers. The method was originally introduced by Naftali Tishby et al. and mostly used in the machine learning field so far. Interestingly, it can also be applied to build surprisingly good digital communication receivers which work fundamentally different than stateof-the-art receivers. Instead of minimizing the quantization error, receiver components with maximum preservation of relevant information for a given bit width can be designed. All signal processing in the resulting receivers is performed using only simple lookup operations. In this paper, we first provide a brief introduction to the design of receiver components with the Information Bottleneck method. We keep referring to decoding of lowdensity parity-check codes as a practical example. The focus of the paper lies on practical decoder implementations on a digital signal processor which illustrate the potential of the proposed technique. An Information Bottleneck decoder with 4 bit message passing decoding is found to outperform 8 bit implementations of the well-known min-sum decoder in terms of bit error rate and to perform extremely close to an 8 bit belief propagation decoder, while offering considerably higher net decoding throughput than both conventional decoders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.