The T1-weighted SI increase within the DN and GP after serial administrations of the linear contrast medium gadopentetate dimeglumine, but not after serial applications of the macrocyclic agent gadobutrol, found in a pediatric population, is consistent with results published for adult patients. The clinical impact of the intracranial T1-hyperintensities is currently unclear. However, in accordance with the recent decision of the Pharmacovigilance and Risk Assessment Committee of the European Medicines Agency, intravenous macrocyclic agents should be preferred and MR contrast media should be used with caution and awareness of the pediatric brain development in children and adolescents.
This study shows the feasibility of a combined protocol for the MRI diagnosis of DVT and PE using gadofosveset trisodium. This procedure is not only more sensitive in detecting DVT compared to standard DUS, but is also able to detect PE in asymptomatic patients.
Background
Post-processing software can be used in digital radiography to achieve higher image quality, especially in cases of scattered radiation. SimGrid is a grid-like software based on a Convolutional Neuronal Network that estimates the distribution and degree of scattered radiation in radiographs and thus improves image quality by simulating an anti-scatter grid. S-Enhance is an algorithm programmed to improve contrast visibility of foreign material.
Objective
The objective of this study was to evaluate the SimGrid and S-Enhance digital radiography post-processing methods for neonatology and paediatric intensive care.
Materials and Methods
Two hundred and ten radiographs from the neonatal (n = 101, 0 to 6 months of age) and paediatric (n = 109, 6 months to 18 years of age) intensive care units performed in daily clinical routine using a mobile digital radiography system were post-processed with one of the algorithms, anonymized and then evaluated comparatively by two experienced paediatric radiologists. For every radiograph, patient data and exposure data were collected and analysed.
Results
Analysis of different radiographs showed that SimGrid significantly improves image quality for patients with a weight above 10 kg (range: 10–30 kg: odds ratio [OR] = 6.683, P < 0.0001), especially regarding the tracheobronchial system, intestinal gas, and bones. Utilizing S-Enhance significantly advances the assessment of foreign material (OR = 136.111, P < 0.0001) and bones (OR = 34.917, P < 0.0001) for children of all ages and weight, whereas overall image quality decreases.
Conclusion
SimGrid offers a differentiated spectrum in image improvement for children beyond the neonatal period whereas S-Enhance especially improves visibility of foreign material and bones for all patients.
Ultrasound elastography (USE) is a modality that in addition to fundamental B-mode, Doppler, and contrast-enhanced sonography is suitable to make qualitative and quantitative statements about the stiffness of tissues. Introduced more than 20 years ago in adults, USE becomes now a diagnostic tool also in children. The aim of this paper is to describe current available techniques for USE in children. The significance for routine use in children is shown, and further interesting applications are reported.
Objectives
To compare the diagnostic value of ultrashort echo time (UTE) magnetic resonance imaging (MRI) for the lung versus the gold standard computed tomography (CT) and two T1-weighted MRI sequences in children.
Methods
Twenty-three patients with proven oncologic disease (14 male, 9 female; mean age 9.0 + / − 5.4 years) received 35 low-dose CT and MRI examinations of the lung. The MRI protocol (1.5-T) included the following post-contrast sequences: two-dimensional (2D) incoherent gradient echo (GRE; acquisition with breath-hold), 3D volume interpolated GRE (breath-hold), and 3D high-resolution radial UTE sequences (performed during free-breathing). Images were evaluated by considering image quality as well as distinct diagnosis of pulmonary nodules and parenchymal areal opacities with consideration of sizes and characterisations.
Results
The UTE technique showed significantly higher overall image quality, better sharpness, and fewer artefacts than both other sequences. On CT, 110 pulmonary nodules with a mean diameter of 4.9 + / − 2.9 mm were detected. UTE imaging resulted in a significantly higher detection rate compared to both other sequences (p < 0.01): 76.4% (84 of 110 nodules) for UTE versus 60.9% (67 of 110) for incoherent GRE and 62.7% (69 of 110) for volume interpolated GRE sequences. The detection of parenchymal areal opacities by the UTE technique was also significantly higher with a rate of 93.3% (42 of 45 opacities) versus 77.8% (35 of 45) for 2D GRE and 80.0% (36 of 45) for 3D GRE sequences (p < 0.05).
Conclusion
The UTE technique for lung MRI is favourable in children with generally high diagnostic performance compared to standard T1-weighted sequences as well as CT.
Key Points
• Due to the possible acquisition during free-breathing of the patients, the UTE MRI sequence for the lung is favourable in children.
• The UTE technique reaches higher overall image quality, better sharpness, and lower artefacts, but not higher contrast compared to standard post-contrast T1-weighted sequences.
• In comparison to the gold standard chest CT, the detection rate of small pulmonary nodules small nodules ≤ 4 mm and subtle parenchymal areal opacities is higher with the UTE imaging than standard T1-weighted sequences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.