Proteins from silver-stained gels can be digested enzymatically and the resulting peptide analyzed and sequenced by mass spectrometry. Standard proteins yield the same peptide maps when extracted from Coomassie- and silver-stained gels, as judged by electrospray and MALDI mass spectrometry. The low nanogram range can be reached by the protocols described here, and the method is robust. A silver-stained one-dimensional gel of a fraction from yeast proteins was analyzed by nano-electrospray tandem mass spectrometry. In the sequencing, more than 1000 amino acids were covered, resulting in no evidence of chemical modifications due to the silver staining procedure. Silver staining allows a substantial shortening of sample preparation time and may, therefore, be preferable over Coomassie staining. This work removes a major obstacle to the low-level sequence analysis of proteins separated on polyacrylamide gels.
We have developed a generic procedure to purify proteins expressed at their natural level under native conditions using a novel tandem affinity purification (TAP) tag. The TAP tag allows the rapid purification of complexes from a relatively small number of cells without prior knowledge of the complex composition, activity, or function. Combined with mass spectrometry, the TAP strategy allows for the identification of proteins interacting with a given target protein. The TAP method has been tested in yeast but should be applicable to other cells or organisms.
The nanoelectrospray ion source (nanoES) has recently been developed and described theoretically. It is different from conventional electrospray sources and from other miniaturized electrospray sources by (i) its 1-2 microns spraying orifice achieved by pulling the spraying capillary to a fine tip, (ii) its very low flow rate of approximately 20 nL/min and the small size of droplets it generates, and (iii) the absence of solvent pumps and inlet valves. The fabrication and operation of nanoES needles is described in detail. Solutions with up to 0.1 M salt contents could be sprayed without sheath flow or pneumatic assist. Improved desolvation in nanoES led to instrument-limited resolution of the signals of a glycoprotein and the ability to signal average extensively allowed the C-terminal sequencing of a 40 kDa protein. Extensive mass spectrometric and tandem mass spectrometric investigation of the components of an unseparated peptide mixture was demonstrated by verification of 93% of the sequence of carbonic anhydrase. A rapid and robust desalting/concentration step coupled to the nanoES procedure allows the direct analysis of impure samples such as peptide mixtures extracted after in-gel digestion.
Molecular analysis of complex biological structures and processes increasingly requires sensitive methods for protein sequencing. Electrospray mass spectrometry has been applied to the high-sensitivity sequencing of short peptides, but technical difficulties have prevented similar success with gel-isolated proteins. Here we report a simple and robust technique for the sequencing of proteins isolated by polyacrylamide gel electrophoresis, using nano-electrospray tandem mass spectrometry. As little as 5 ng protein starting material on Coomassie- or silver-stained gels can be sequenced. Multiple-sequence stretches of up to 16 amino acids are obtained, which identify the protein unambiguously if already present in databases or provide information to clone the corresponding gene. We have applied this method to the sequencing and cloning of a protein which inhibits the proliferation of capillary endothelial cells in vitro and thus may have potential antiangiogenic effects on solid tumours.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.