Monitoring of radioactive noble gases, in particular xenon isotopes, is a crucial element of the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The capability of the noble gas network, which is currently under construction, to detect signals from a nuclear explosion critically depends on the background created by other sources. Therefore, the global distribution of these isotopes based on emissions and transport patterns needs to be understood. A significant xenon background exists in the reactor regions of North America, Europe and Asia. An emission inventory of the four relevant xenon isotopes has recently been created, which specifies source terms for each power plant. As the major emitters of xenon isotopes worldwide, a few medical radioisotope production facilities have been recently identified, in particular the facilities in Chalk River (Canada), Fleurus (Belgium), Pelindaba (South Africa) and Petten (Netherlands). Emissions from these sites are expected to exceed those of the other sources by orders of magnitude. In this study, emphasis is put on 133 Xe, which is the most prevalent xenon isotope. First, based on the emissions known, the resulting 133 Xe concentration levels at all noble gas stations of the final CTBT verification network were calculated and found to be consistent with observations. Second, it turned out that emissions from the radioisotope facilities can explain a number of observed peaks, meaning that atmospheric transport modelling is an important tool for the categorization of measurements. Third, it became evident that Nuclear Power Plant emissions are more difficult to treat in the models, since their temporal variation is high and not generally reported. Fourth, there are indications that the assumed annual emissions may be underestimated by factors of two to ten, while the general emission patterns seem to be well understood. Finally, it became evident that 133 Xe sources mainly influence the sensitivity of the monitoring system in the mid-latitudes, where the network coverage is particularly good.
Activity concentration data from ambient radioxenon measurements in ground level air, which were carried out in Europe in the framework of the International Noble Gas Experiment (INGE) in support of the development and build-up of a radioxenon monitoring network for the Comprehensive Nuclear-Test-Ban Treaty verification regime are presented and discussed. Six measurement stations provided data from 5 years of measurements performed between 2003 and 2008: Longyearbyen (Spitsbergen, Norway), Stockholm (Sweden), Dubna (Russian Federation), Schauinsland Mountain (Germany), BruySres-le-ChA cent tel and Marseille (both France). The noble gas systems used within the INGE are designed to continuously measure low concentrations of the four radioxenon isotopes which are most relevant for detection of nuclear explosions: (131m)Xe, (133m)Xe, (133)Xe and (135)Xe with a time resolution less than or equal to 24 h and a minimum detectable concentration of (133)Xe less than 1 mBq/m(3). This European cluster of six stations is particularly interesting because it is highly influenced by a high density of nuclear power reactors and some radiopharmaceutical production facilities. The activity concentrations at the European INGE stations are studied to characterise the influence of civilian releases, to be able to distinguish them from possible nuclear explosions. It was found that the mean activity concentration of the most frequently detected isotope, (133)Xe, was 5-20 mBq/m(3) within Central Europe where most nuclear installations are situated (BruySres-le-ChA cent tel and Schauinsland), 1.4-2.4 mBq/m(3) just outside that region (Stockholm, Dubna and Marseille) and 0.2 mBq/m(3) in the remote polar station of Spitsbergen. No seasonal trends could be observed from the data. Two interesting events have been examined and their source regions have been identified using atmospheric backtracking methods that deploy Lagrangian particle dispersion modelling and inversion techniques. The results are consistent with known releases of a radiopharmaceutical facility
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.