International audienceA sample of Escherichia coli has been analyzed by laser-induced breakdown spectroscopy (LIBS) using femtosecond pulses. The spectrum shows strong CN molecular bands due to the direct ablation of native CN molecular bonds from the bacteria in contrast with weak atomic lines from carbon. The native nature of the observed CN bonds is supported by the kinetic behavior of the CN band head which rapidly decays with a time constant of 94 ns, while for a pure graphite sample the CN band head increases with a delay of 450 ns due to recombination with the ambient air. Moreover, about hundred resolved lines belonging to 12 atomic or molecular species are recorded, providing a valuable spectral signature to identify the bacterium
Bacterial samples ͑Escherichia coli and Bacillus subtilis͒ have been analyzed by laser-induced breakdown spectroscopy ͑LIBS͒ using femtosecond pulses. We compare the obtained spectra with those resulting from the classical nanosecond LIBS. Specific features of femtosecond LIBS have been demonstrated, very attractive for analyzing biological sample: ͑i͒ a lower plasma temperature leading to negligible nitrogen and oxygen emissions from excited ambient air and a better contrast in detection of trace mineral species; and ͑ii͒ a specific ablation regime that favors intramolecular bonds emission with respect to atomic emission. A precise kinetic study of molecular band head intensities allows distinguishing the contribution of native CN bonds released by the sample from that due to carbon recombination with atmospheric nitrogen. Furthermore a sensitive detection of trace mineral elements provide specific spectral signature of different bacteria. An example is given for the Gram test provided by different magnesium emissions from Escherichia coli and Bacillus subtilis. An entire spectrum consists of hundred resolved lines belonging to 13 atomic or molecular species, which provides an ensemble of valuable data to identify different bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.