Prior work demonstrated significant contrast in visible wavelength Mueller matrix images for healthy and pre-cancerous regions of excised cervical tissue. This work demonstrates post-processing compressions of the full Mueller matrix that preserve detection performance. The purpose of this post-processing is to understand polarimetric measurement utility for computing mathematical observers and designing future imaging protocols. The detection performance of the full Mueller matrix, and both linear and non-linear parameters of the Mueller matrix will be compared. The area under the receiver operating characteristic (ROC) curve, otherwise known as the AUC, is the gold standard metric to quantify detection performance in medical applications. An AUC = 1 is perfect detection and AUC = 0.5 is the performance of guessing. Either the scalar retardance or the 3 smallest eigenvalues of the coherency matrix yield an average AUC of 0.94 or 0.93, respectively. When these four non-linear parameters are used simultaneously the average AUC is 0.95. The J-optimal Channelized Quadratic Observer (J-CQO) method for optimizing polarimetric measurements demonstrates equivalent AUC values for the full Muller matrix and 6 J-CQO optimized measurements. The advantage of this optimization is that only 6 measurements, instead of 16 for the full Mueller matrix, are required to achieve this AUC.
We study the spontaneous decay rate of a dipole emitter close to a metallic nanoparticle in the extreme near-field regime. The metal is modeled using a nonlocal dielectric function that accounts for the microscopic length scales of the free electron gas. We describe quantitatively the crossover between the macroscopic and microscopic regimes and the enhanced nonradiative decay due to microscopic interactions. Our theory is in agreement with results previously established in the asymptotic near- and far-field regimes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.