International audienceA trapped atom interferometer involving state-selective adiabatic potentials with two microwave frequencies on a chip is proposed. We show that this configuration provides a way to achieve a high degree of symmetry between the two arms of the interferometer, which is necessary for coherent splitting and recombination of thermal (i.e., noncondensed) atoms. The resulting interferometer holds promise to achieve high contrast and long coherence time, while avoiding the mean-field interaction issues of interferometers based on trapped Bose-Einstein condensates
We report a theoretical study of a double-well Ramsey interferometer using internal state labelling. We consider the use of a thermal ensemble of cold atoms rather than a Bose-Einstein condensate to minimise the effects of atomic interactions. To maintain a satisfactory level of coherence in this case, a high degree of symmetry is required between the two arms of the interferometer. Assuming that the splitting and recombination processes are adiabatic, we theoretically derive the phase-shift and the contrast of such an interferometer in the presence of a gravity or an acceleration field. We also consider using a 'shortcut to adiabaticity' protocol to speed up the splitting process and discuss how such a procedure affects the phase shift and contrast. We find that the two procedures lead to phase-shifts of the same form.
We report the achievement of stimulated Raman adiabatic passage (STIRAP) in the microwave frequency range between internal states of a Bose-Einstein condensate (BEC) magnetically trapped in the vicinity of an atom chip. The STIRAP protocol used in this experiment is robust to external perturbations as it is an adiabatic transfer, and power-efficient as it involves only resonant (or quasi-resonant) processes. Taking into account the effect of losses and collisions in a non-linear Bloch equations model, we show that the maximum transfer efficiency is obtained for non-zero values of the one-and two-photon detunings, which is confirmed quantitatively by our experimental measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.