Oligomers of the organic semiconductor PTCDA are studied by means of helium nanodroplet isolation (HENDI) spectroscopy. In contrast to the monomer absorption spectrum, which exhibits clearly separated, very sharp absorption lines, it is found that the oligomer spectrum consists of three main peaks having an apparent width orders of magnitude larger than the width of the monomer lines. Using a simple theoretical model for the oligomer, in which a Frenkel exciton couples to internal vibrational modes of the monomers, these experimental findings are nicely reproduced. The three peaks present in the oligomer spectrum can already be obtained taking only one effective vibrational mode of the PTCDA molecule into account. The inclusion of more vibrational modes leads to quasi continuous spectra, resembling the broad oligomer spectra.
The interaction between 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) and rare gas or para-hydrogen samples is studied by means of laser-induced fluorescence excitation spectroscopy. The comparison between spectra of PTCDA embedded in a neon matrix and spectra attached to large neon clusters shows that these large organic molecules reside on the surface of the clusters when doped by the pick-up technique. PTCDA molecules can adopt different conformations when attached to argon, neon, and para-hydrogen clusters which implies that the surface of such clusters has a well-defined structure without liquid or fluxional properties. Moreover, a precise analysis of the doping process of these clusters reveals that the mobility of large molecules on the cluster surface is quenched, preventing agglomeration and complex formation.
The interaction between 3, 4, 9, 10-perylenetetracarboxylic dianhydride (PTCDA) molecules and solid rare gas samples is studied by means of fluorescence emission spectroscopy. Laser-excited PTCDA-doped large argon, neon, and para-hydrogen clusters along with PTCDA embedded in helium nanodroplets are spectroscopically characterized with respect to line broadening and shifting. A fast non-radiative relaxation is observed before a radiative decay in the electronic ground state takes place. In comparison, fluorescence emission studies of PTCDA embedded in bulk neon and argon matrices result in much more complex spectral signatures characterized by a splitting of the different emission lines. These can be assigned to the appearance of site isomers of the surrounding matrix lattice structure.
A new setup for doping helium nanodroplets by means of laser ablation at kilohertz repetition rate is presented. The doping process is characterized and two distinct regimes of laser ablation are identified. The setup is shown to be efficient and stable enough to be used for spectroscopy, as demonstrated on beam depletion spectra of lithium atoms attached to helium nanodroplets. For the first time, helium droplets are doped with high temperature refractory materials such as titanium and tantalum. Doping with the nonvolatile DNA basis guanine is found to be efficient and a number of oligomers are detected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.