This paper evaluates the 2-hydroxyazobenzene platform for tailoring proton concentration pulses and oscillations with monochromatic light. The easily prepared 2-hydroxyazobenzenes exhibit large absorptions in the near-UV range. Photoisomerization was investigated by UV/Vis absorption, (1)H NMR spectroscopy, and steady-state fluorescence emission. In the whole investigated series, the trans stereoisomer of the 2-hydroxyazobenzene motif provides the corresponding cis derivative with an action cross section in the 10(3) M(-1) cm(-1) range. At the same time, photoisomerization is accompanied by a significant pK drop of the phenol group. According to the phenyl-substituent pattern, cis-to-trans thermal back-isomerization can be tuned in the 10 ms-100 s range. Up to 2 units of reversible pH drops or pH oscillations on the 10 s timescale have been obtained by appropriately tailoring single-wavelength illumination of 2-hydroxyazobenzene solutions.
A 2-hydroxyazobenzene platform has been evaluated to photorelease protons in aqueous solutions. Three different systems relying on molecular, supramolecular and polymeric strategies have been investigated in order to tune the water solubility and the thermodynamic and kinetic properties. This paper first reports on the syntheses and the physico chemical analyses for each system. Subsequently, we show that the three strategies are appropriate to reversibly photo-generate tunable pH drops in water up to one pH unit amplitude and at the 10-100 s timescale, upon transient illumination at 365 nm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.