Thanatin is a cationic 21-residue antimicrobial and antifongical peptide found in the spined soldier bug Podisus maculiventris. It is believed that it does not permeabilize membranes but rather induces the agglutination of bacteria and inhibits cellular respiration. To clarify its mode of action, lipid vesicle organization and aggregation propensity as well as peptide secondary structure have been studied using different membrane models. Dynamic light scattering and turbidimetry results show that specific mixtures of negatively charged and zwitterionic phospholipid vesicles are able to mimic the agglutination effect of thanatin observed on Gram-negative and Gram-positive bacterial cells, while monoconstituent ("conventional") models cannot reproduce this phenomenon. The model of eukaryotic cell reveals no particular interaction with thanatin, which is consistent with the literature. Infrared spectroscopy shows that under the conditions under which vesicle agglutination occurs, thanatin exhibits a particular spectral pattern in the amide I' region and in the region associated with Arg side chains. The data suggest that thanatin mainly retains its hairpin structure, Arg residues being involved in strong interactions with anionic groups of phospholipids. In the absence of vesicle agglutination, the peptide conformation and Arg side-chain environment are similar to those observed in solution. The data show that a negatively charged membrane is required for thanatin to be active, but this condition is insufficient. The activity of thanatin seems to be modulated by the charge surface density of membranes and thanatin concentration.
Cationic antimicrobial peptides are considered promising candidates to complement currently used antibiotics, which are less effective against increasingly resistant pathogens. To determine the mechanism of action of these peptides, a better understanding of each molecular determinant involved in their membrane interactions is of great importance. In this study, we have focused on the role of electrostatic interactions and amphiphilicity on the membrane interactions since the large majority of natural antimicrobial peptides are cationic. Therefore, cationic and anionic peptides have been prepared based on a model 14-mer peptide. The latter is a synthetic peptide composed of ten leucines and four phenylalanines, which are modified by the addition of the crown ether. Infrared spectroscopy results indicate that the position of substitution is the main determinant involved in the secondary structure adopted by the peptides, and not the charge of the substituted residues. Fluorescence vesicle leakage assays indicate, however, differences between the ability of cationic and anionic peptides to induce calcein release in zwitterionic and anionic lipid vesicles, suggesting an importance of electrostatic interactions and repulsions. Finally, (31)P NMR results indicate that the vesicle morphologies is not significantly affected by the interactions with both cationic and anionic peptides but that their effect on lipid bilayers is mainly determined by their secondary structure. This study therefore indicates that the membrane interactions of model 14-mer peptides are mainly governed by their secondary structure, which depends on the position of substitution, and not the charge of the residues.
We have investigated in the present study the effect of both non-selective and selective cationic 14-mer peptides on the lipid orientation of DMPC bilayers by (31)P solid-state nuclear magnetic resonance (NMR) spectroscopy. Depending on the position of substitution, these peptides adopt mainly either an α-helical structure able to permeabilize DMPC and DMPG vesicles (non-selective peptides) or an intermolecular β-sheet structure only able to permeabilize DMPG vesicles (selective peptides). Several systems have been investigated, namely bilayers mechanically oriented between glass plates as well as bicelles oriented with their normal perpendicular or parallel to the external magnetic field. The results have been compared with spectral simulations with the goal of elucidating the difference in the interaction of these two types of peptides with zwitterionic lipid bilayers. The results indicate that the perturbation induced by selective peptides is much greater than that induced by non-selective peptides in all the lipid systems investigated, and this perturbation has been associated to the aggregation of the selective β-sheet peptides in these systems. On the other hand, the oriented lipid spectra obtained in the presence of non-selective peptides suggest the presence of toroidal pores. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.