A promising solution to achieve autonomous wireless sensor networks is to enable each node to harvest energy in its environment. To address the time-varying behavior of energy sources, each node embeds an energy manager responsible for dynamically adapting the power consumption of the node in order to maximize the quality of service while avoiding power failures. A novel energy management algorithm based on reinforcement learning, named RLMan, is proposed in this work. By continuously exploring the environment, RLMan adapts its energy management policy to time-varying environment, regarding both the harvested energy and the energy consumption of the node. Linear function approximations are used to achieve very low computational and memory footprint, making RLMan suitable for resource-constrained systems such as wireless sensor nodes. Moreover, RLMan only requires the state of charge of the energy storage device to operate, which makes it practical to implement. Exhaustive simulations using real measurements of indoor light and outdoor wind show that RLMan outperforms current state of the art approaches, by enabling almost 70 % gain regarding the average packet rate. Moreover, RLMan is more robust to variability of the node energy consumption.
Cognitive radio has been an active research area in wireless communications over the past 10 years. TV Digital Switch Over resulted in new regulatory regimes, which offer the first large-scale opportunity for cognitive radio and networks. This article considers the most recent regulatory rules for TV White Space opportunistic usage, and proposes technologies to operate in these bands. It addresses techniques to assess channel vacancy by the cognitive radio, focusing on the two incumbent systems of the TV bands, namely TV stations and wireless microphones. Spectrum-sensing performance is discussed under TV White Space regulation parameters. Then, modulation schemes for the opportunistic radio are discussed, showing the limitations of classical multi-carrier techniques and the advantages of filter bank modulations. In particular, the low adjacent band leakage of filter bank is addressed, and its benefit for spectrum pooling is stressed as a means to offer broadband access through channel aggregation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.