African swine fever (ASF) is an emerging disease currently spreading at the interface between wild boar and pig farms in Europe and Asia. Current disease control regulations, which involve massive culling with significant economic and animal welfare costs, need to be improved. Modelling enables relevant control measures to be explored, but conducting the exercise during an epidemic is extremely difficult. Modelling challenges enhance modellers' ability to provide timely advice to policy makers, improve their readiness when facing emerging threats, and promote international collaborations. The ASF-Challenge, which ran between August 2020 and January 2021, was the first modelling challenge in animal health. In this paper, we describe the objectives and rules of the challenge. We then demonstrate the mechanistic multi-host model that was used to mimic as accurately as possible an ASF-like epidemic, provide a detailed explanation of the surveillance and intervention strategies that generated the synthetic data, and describe the different management strategies that were assessed by the competing modelling teams. We then outline the different technical steps of the challenge as well as its environment. Finally, we synthesize the lessons we learnt along the way to guide future modelling challenges in animal health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.