Wet etching of glass by hydrofluoric acid is widely used in microfabrication, but is limited by the isotropic nature of the process that leads to rounded sidewalls and a 90 degrees angle between the etch front and the surface of the substrate. For many applications such as microvalving, or for further processing such as spin-coating, well controlled, gently sloping sidewalls are often preferred. Here, we present a new approach for forming straight facets and for adjusting the sidewall angle in wet-etched glass substrates by controlling the lateral dissolution of an etch mask during etching. The etch mask comprises a Ti-Au bilayer where Au serves to protect the Ti. During isotropic etching of glass by HF the Ti layer is etched away laterally at the same time, which leads to straight, gently sloping sidewalls. We introduce two methods for controlling the sidewall angle. The first one is based on adjusting the thickness of Ti which controls the lateral etch rate, and thus the angle; the thinner the Ti, the slower its lateral etch rate and the steeper the angle in the etched glass. The second method involves a cathodic bias applied to the Ti-Au etch mask which again regulates the dissolution rate of Ti; the more negative the bias the slower the lateral etch rate. Both methods offer accurate control of the sidewall angle over a wide range, can be readily integrated into existing fabrication processes, and will be particularly useful for making channels with trapezoidal cross-sections, valve seats with gentle profiles, or for patterning electrodes across and inside of microfluidic channels.
We have fabricated and characterized large area graphene ion sensitive field effect transistors (ISFETs) with tantalum pentoxide sensing layers and demonstrated pH sensitivities approaching the Nernstian limit. Low temperature atomic layer deposition was used to deposit tantalum pentoxide atop large area graphene ISFETs. The charge neutrality point of graphene, inferred from quantum capacitance or channel conductance, was used to monitor surface potential in the presence of an electrolyte with varying pH. Bare graphene ISFETs exhibit negligible response, while graphene ISFETs with tantalum pentoxide sensing layers show increased sensitivity reaching up to 55 mV/pH over pH 3 through pH 8. Applying the Bergveld model, which accounts for site binding and a Guoy-Chapman-Stern picture of the surface-electrolyte interface, the increased pH sensitivity can be attributed to an increased buffer capacity reaching up to 1014 sites/cm2. ISFET response was found to be stable to better than 0.05 pH units over the course of two weeks.
In this paper we present a fiber optic sensor that is designed for embedded applications and long term health monitoring of structures. The sensor design uses an induced phase discontinuity in the fiber Bragg grating to create a narrow pass‐band within the reflection spectrum of the grating. The position of this narrow window within the Bragg spectrum is used to monitor the sensor's health. Theoretical analysis and experimental results are presented for this class of self‐monitoring sensors. Related signal demodulation scheme is also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.