Populus is a genus of fast growing trees that may be suitable as a bioenergy crop grown in short rotation, but understanding the genetic nature of yield and genotype interactions with the environment is critical in developing new high-yield genotypes for wide-scale planting. In the present study, 210 genotypes from an F 2 population (Family 331; POP1) derived from a cross between Populus trichocarpa 93-968 and P. deltoides ILL-129 were grown in southern UK, central France and northern Italy. The performance of POP1, based upon first-and second-year main stem traits and biomass production, improved from northern to southern Europe. Trees at the Italian site produced the highest mean biomass ranging from 0.77 to 18.06 oven-dried tonnes (ODT) ha −1 year −1 , and the UK site produced the lowest mean biomass ranging from 0.18 to 10.31 ODT ha −1 year −1 . Significant genotype×environ-ment interactions were seen despite heritability values across sites being moderate to high. Using a pseudotestcross analysis, 37 quantitative trait loci (QTL) were identified for the maternal parent and 45 for the paternal parent for eight stem and biomass traits across the three sites. High genetic correlations between traits suggested that collocating QTL could be inferred as a single pleiotropic QTL, reducing the number of unique QTL to 23 and 24 for the maternal and paternal parent, respectively. Additive genetic effects were seen to differ significantly for eight QTL on the maternal map and 20 on the paternal map across sites. An additive main effects and multiplicative interaction analysis was carried out to obtain stability parameters for each trait. These parameters were mapped as QTL, and collocation to trait QTL was accessed. Two of the eight stability QTL collocate to trait QTL on the maternal map, and 8 of the 20 stability QTL collocate to trait QTL on the paternal map, suggesting that a regulatory gene model is prevalent over an allele sensitivity model for stem trait stability across these environments.
Fifteen isolates of the biotrophic oomycete Peronospora parasitica (downy mildew) were obtained from a population of Arabidopsis thaliana plants that established naturally in a garden the previous year. They exhibited phenotypic variation in a set of 12 Arabidopsis accessions that suggested that the parasite population consisted of at least six pathotypes. One isolate, Maks9, elicited an interaction phenotype of flecking necrosis and no sporulation (FN) in the Arabidopsis accession Nd-1, and more extensive pitting necrosis with no sporulation (PN) in the accession Ws-2. RPP13 was designated as the locus for a single dominant resistance gene associated with the resistance in Nd-1 and mapped to an interval of approximately 60 kb on a bacterial artificial chromosome (BAC) contig on the lower arm of chromosome 3. This locus is approximately 6 cM telomeric to RPP1, which was previously described as the locus for the PN interaction with five Peronospora isolates, including resistance to Maks9 in Ws-2. New Peronospora isolates were obtained from four other geographically distinct populations of P. parasitica. Four isolates were characterized that elicited an FN phenotype in Nd-1 and mapped resistance to the RPP13 locus. This suggests that the RPP13 locus contains either a single gene capable of multiple isolate recognition or a group of tightly linked genes. Further analysis suggests that the RPP11 gene in the accession Rld-0 may be allelic to RPP13 but results in a different recognition capability.
White poplar ( Populus alba L.) is a native species in Europe, but its growth potential is largely unknown. The general objectives of our study were to determine the impact of contrasted environments across Europe and the influence of parental characteristics on the growth potential of an intraspecific F1 white poplar family originating from a cross between parents native from the south and the north of Italy. The growth of the family was monitored at three sites located in the north of Italy, in central France, and in the southern United Kingdom. The family showed a highly superior productivity in Italy. A pronounced plasticity among sites was found for the male parent only. Indeed, for this parent, the highest growth was observed in northern Italy, its area of origin. A positive heterosis was observed mainly in France and in the United Kingdom. Broad-sense heritability values were moderate in most cases. However, the growth of the family was in some cases superior to the one of several other interspecific hybrid families growing under the same conditions, underlying the poorly known growth potential of such intraspecific hybrids for biomass production under European conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.