We present a quantum key distribution system with a 2.5 GHz repetition rate using a threestate time-bin protocol combined with a one-decoy approach. Taking advantage of superconducting single-photon detectors optimized for quantum key distribution and ultra low-loss fiber, we can distribute secret keys at a maximum distance of 421 km and obtain secret key rates of 6.5 bps over 405 km.
Recent progress in the development of superconducting nanowire single-photon detectors (SNSPDs) made of amorphous material has delivered excellent performances, and has had a great impact on a range of research fields. Despite showing the highest system detection efficiency (SDE) ever reported with SNSPDs, amorphous materials typically lead to lower critical currents, which impacts on their jitter performance. Combining a very low jitter and a high SDE remains a challenge. Here, we report on highly efficient superconducting nanowire single-photon detectors based on amorphous MoSi, combining system jitters as low as 26 ps and a SDE of 80% at 1550 nm. We also report detailed observations on the jitter behaviour, which hints at intrinsic limitations and leads to practical implications for SNSPD performance.
Within the global challenge of sustainable energy supply and greenhouse gas emissions mitigation, carbon capture and storage and the deployment of renewable resources are considered as promising solutions. In this study the production of ammonia mainly used in the fertilizer industry and that is responsible for around 2–3 % of the world greenhouse gas emissions is analyzed. Considering natural gas and biomass as a resource and the option of CO2 capture and storage, different process configurations are systematically compared with regard to energy, economic and environmental considerations. A consistent thermo‐environonomic optimization approach combining flowsheeting, process integration techniques, economic performance evaluation, life cycle assessment and multi‐objective optimization is applied for the conceptual process design and competitiveness evaluation. It is highlighted that the quality of the process integration is a key factor for improving the performance by valorizing the heat excess through electricity cogeneration. Including CO2 mitigation in the ammonia production allows to reduce the emissions but leads to a slight efficiency decrease due to the energy consumption for the CO2 compression. For the natural gas fed process yielding an energy efficiency around 65 %, the overall life cycle emissions can be reduced to 0.79 kgCO2/kgNH3 with CO2 capture compared to 1.6 kgCO2/kgNH3 without capture. Considering the biogenic nature of the carbon in the biomass, the emissions drop to −1.79 kgCO2/kgNH3 for the biomass process having an energy efficiency of 50 %. The economic competitiveness highly depends on the resource price and the introduction of a carbon tax. This study reveals the potential of the decarbonization of the fertilizer industry.
We present a novel hybrid glass-polymer micromechanical sensor by combining two femtosecond laser direct writing processes: laser illumination followed by chemical etching of glass and two-photon polymerization. This incorporation of techniques demonstrates the capability of combining mechanical deformable devices made of silica with an integrated polymer structure for passive chemical sensing application. We demonstrate that such a sensor could be utilized for investigating the elastic properties of polymeric microstructures fabricated via the two-photon polymerization technique. Moreover, we show that polymeric microstructure stiffness increases when immersed in organic liquids.
Quantum key distribution has emerged as the most viable scheme to guarantee information security in the presence of large-scale quantum computers and, thanks to the continuous progress made in the past 20 years, it is now commercially available. However, the secret key rates remain limited to just over 10 Mbps due to several bottlenecks on the receiver side. Here we present a custom multipixel superconducting nanowire single-photon detector that is designed to guarantee high count rates and precise timing discrimination. Leveraging the performance of the detector and coupling it to fast acquisition and real-time key distillation electronics, we remove two major roadblocks and achieve a considerable increase of the secret key rates with respect to the state of the art. In combination with a simple 2.5-GHz clocked time-bin quantum key distribution system, we can generate secret keys at a rate of 64 Mbps over a distance of 10.0 km and at a rate of 3.0 Mbps over a distance of 102.4 km with real-time key distillation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.