We characterize convex isoperimetric sets in the Heisenberg group. We first prove Sobolev regularity for a certain class of R 2 -valued vector fields of bounded variation in the plane related to the curvature equations. Then we show that the boundary of convex isoperimetric sets is foliated by geodesics of the Carnot-Carathéodory distance.
We compare the Hausdorff measures and dimensions with respect to the Euclidean and Heisenberg metrics on the first Heisenberg group. The result is a dimension jump described by two inequalities. The sharpness of our estimates is shown by examples. Moreover a comparison between Euclidean and H-rectifiability is given.
We prove that h-convex functions on Carnot groups of step two are locally Lipschitz continuous with respect to any intrinsic metric. We show that an additional measurability condition implies the local Lipschitz continuity of h-convex functions on arbitrary Carnot groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.