The advent of super-resolution imaging (SRI) has created a need for optimized labelling strategies. We present a new method relying on fluorophore-conjugated monomeric streptavidin (mSA) to label membrane proteins carrying a short, enzymatically biotinylated tag, compatible with SRI techniques including uPAINT, STED and dSTORM. We demonstrate efficient and specific labelling of target proteins in confined intercellular and organotypic tissues, with reduced steric hindrance and no crosslinking compared with multivalent probes. We use mSA to decipher the dynamics and nanoscale organization of the synaptic adhesion molecules neurexin-1β, neuroligin-1 (Nlg1) and leucine-rich-repeat transmembrane protein 2 (LRRTM2) in a dual-colour configuration with GFP nanobody, and show that these proteins are diffusionally trapped at synapses where they form apposed trans-synaptic adhesive structures. Furthermore, Nlg1 is dynamic, disperse and sensitive to synaptic stimulation, whereas LRRTM2 is organized in compact and stable nanodomains. Thus, mSA is a versatile tool to image membrane proteins at high resolution in complex live environments, providing novel information about the nano-organization of biological structures.
Synthetic gene delivery vectors are gaining increasing importance in gene therapy as an alternative to recombinant viruses. Among the various types of non-viral vectors, cationic lipids are especially attractive as they can be prepared with relative ease and extensively characterised. Further, each of their constituent parts can be modified, thereby facilitating the elucidation of structure-activity relationships. In this forward-looking review, cationic lipid-mediated gene delivery will mainly be discussed in terms of the structure of the three basic constituent parts of any cationic lipid: the polar headgroup, hydrophobic moiety and linker. Particular emphasis will be placed on recent advances in the field as well as on our own original contributions. In addition to reviewing critical physicochemical features (such as headgroup hydration) of monovalent lipids, the use of headgroups with known nucleic-acid binding modes, such as linear and branched polyamines, aminoglycosides and guanidinium functions, will be comprehensively assessed. A particularly exciting innovation in linker design is the incorporation of environment-sensitive groups, the intracellular hydrolysis of which may lead to more controlled DNA delivery. Examples of pH-, redox- and enzyme-sensitive functional groups integrated into the linker are highlighted and the benefits of such degradable vectors can be evaluated in terms of transfection efficiency and cationic lipid-associated cytotoxicity. Finally, possible correlations between the length and type of hydrophobic moiety and transfection efficiency will be discussed. In conclusion it may be foreseen that in order to be successful, the future of cationic lipid-based gene delivery will probably require the development of sophisticated virus-like systems, which can be viewed as "programmed supramolecular systems" incorporating the various functions required to perform in a chronological order the different steps involved in gene transfection.
Solvatochromic fluorophores possess emission properties that are sensitive to the nature of the local microenvironment. These dyes have been exploited in applications ranging from the study of protein structural dynamics to the detection of protein-binding interactions. While the solvatochromic indole fluorophore of tryptophan has been utilized extensively for in vitro studies to advance our understanding of basic protein biochemistry, the emergence of new extrinsic synthetic dyes with improved properties in conjunction with recent developments in site-selective methods to incorporate these chemical tools into proteins now open the way for studies in more complex systems. Herein we discuss recent technological advancements and their application in the design of powerful reporters, which serve critical roles in modern cell biology and assay development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.