Imaging photoplethysmography (iPPG) enables the extraction of physiological signals from standard RGB video recordings. For the assessment of the human health condition, pulse pressure is of utmost importance and is usually determined from conventional blood pressure signals.Within this work we present the fully automated estimation of pulse pressure using iPPG. We computed the pulse strength from the iPPG signals and performed a linear correlation analysis with the corresponding pulse pressure. We compared different algorithmic iPPG approaches amongst one is an artificial neural network. We measured a maximum pearson correlation of 0.65 for the artificial neural network and 0.63 for the best conventional approach. Our results show 0.1 increase in correlation coefficient compared to previous work based on manual processing, demonstrating the feasibility of automated contactless pulse pressure estimation from RGB videos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.