We study the dynamics of a quantum emitter coupled to a two-dimensional photonic crystal featuring a finite bandwidth with sharp edges and a Van-Hove singularity. We study the effect of strong system-bath coupling and non-Markovianity of the photonic environment using a nonperturbative approach based on the recently introduced NCA dynamical map for open quantum systems. We show that several characteristic features of the dynamics near a photonic band-edge such as the freezing of spontaneous emission and the maximum light-matter entanglement, get strongly modified in presence of counter-rotating terms in the system-bath coupling, beyond the rotating-wave approximation. Furthermore, by computing the spectral function of the quantum emitter we comment on the role played by atom-photon bound-state and show that this acquires a much larger lifetime once the rotating-wave approximation is relaxed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.