This article proposes a distributed differential evolution which employs a novel self-adaptive scheme, namely scale factor inheritance. In the proposed algorithm, the population is distributed over several sub-populations allocated according to a ring topology. Each sub-population is characterized by its own scale factor value. With a probabilistic criterion, that individual displaying the best performance is migrated to the neighbor population and replaces a pseudo-randomly selected individual of the target sub-population. The target sub-population inherits not only this individual but also the scale factor if it seems promising at the current stage of evolution. In addition, a perturbation mechanism enhances the exploration feature of the algorithm. The proposed algorithm has been run on a set of various test problems and then compared to two sequential differential evolution algorithms and three distributed differential evolution algorithms recently proposed in literature and representing state-of-the-art in the field. Numerical results show that the proposed approach seems very efficient for most of the analyzed problems, and outperforms all other algorithms considered in this study.
This paper proposes a novel algorithm for large-scale optimization problems. The proposed algorithm, namely shuffle or update parallel differential evolution (SOUPDE) is a structured population algorithm characterized by sub-populations employing a Differential evolution logic. The sub-populations quickly exploit some areas of the decision space, thus drastically and quickly reducing the fitness value in the highly multi-variate fitness landscape. New search logics are introduced into the subpopulation functioning in order to avoid a diversity loss and thus premature convergence. Two simple mechanisms have been integrated in order to pursue this aim. The first, namely shuffling, consists of randomly rearranging the individuals over the sub-populations. The second consists of updating all the scale factors of the sub-populations. The proposed algorithm has been run on a set of various test problems for five levels of dimensionality and then compared with three popular meta-heuristics. Rigorous statistical and scalability analyses are reported in this article. Numerical results show that the proposed approach significantly outperforms the meta-heuristics considered in the benchmark and has a good performance despite the high dimensionality of the problems. The proposed algorithm balances well between exploitation and exploration and succeeds to have a good performance over the various dimensionality values and test problems present in the benchmark. It succeeds at outperforming the reference algorithms considered in this study. In addition, the scalability analysis proves that with respect to a standard Differential Evolution, the proposed SOUPDE algorithm enhances its performance while the dimensionality grows.
This paper proposes a novel distributed differential evolution algorithm, namely Distributed Differential Evolution with Explorative-Exploitative Population Families (DDE-EEPF). In DDE-EEPF the sub-populations are grouped into two families. Sub-populations belonging to the first family have constant population size, are arranged according to a ring topology and employ a migration mechanism acting on the individuals with the best performance. This first family of sub-populations has the role of exploring the decision space and constituting an external evolutionary framework. The second family is composed of sub-populations with a dynamic population size: the size is progressively reduced. The sub-populations belonging to the second family are highly exploitative and are supposed to quickly detect solutions with a high performance. The solutions generated by the second family then migrate to the first family. In order to verify its viability and effectiveness, the DDE-EEPF has been run on a set of various test problems and compared to four distributed differential evolution algorithms. Numerical results show that the proposed algorithm is efficient for most of the analyzed problems, and outperforms, on average, all the other algorithms considered in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.