The authors report on the growth of spinel ZnM(d6)2O4 (M=Co, Rh, and Ir), a p-type wide band gap semiconductor by pulsed laser deposition. The band gap of these compounds is determined by the ligand field splitting in the subbands of the metallic d6 cation. Photoemission spectroscopy revealed that the valence band maximum is composed of occupied t2g6 states. The observed band gap is increasing for higher quantum numbers, being as large as ∼3eV for ZnIr2O4, which is expected from theoretical predictions. Grown in polycrystalline phase, films of these materials display high conductivity, well above 2Scm−1.
Crystalline Pb(Zr,Ti)O3 (PZT) thin films between metallic-oxide SrRuO3 (SRO) electrodes were prepared using pulsed laser deposition on CeO2/yttria-stabilized zirconia buffered silicon (001) substrates. Different deposition conditions for the initial layers of the bottom SRO electrode result in an orientation switch. Either (110)- or (001)-oriented SRO thin films are obtained and the PZT films deposited on the bottom electrode continued both growth directions. The ferroelectric characteristics of the SRO/PZT/SRO capacitors are found to be strongly dependent on their crystalline orientation: PZT (001)-oriented thin films showed stable, high quality ferroelectric response, while the remnant polarization of the PZT (110)-oriented thin films only show high response after multiple switching cycles.
We will demonstrate a stress-optic phase modulator in the passive SiN-based TriPleX platform using a layer of piezoelectric material. Regarding the stress-optic effect, the piezoelectric layer deposited on top of an optical waveguide is employed to control the phase of propagating light in the structure by applying an electrical field across the layer. In this work, it is demonstrated that the stress-optic effect lowers the power consumption by a factor of one million for quasi-DC operation and increases the modulation speed by three orders of magnitude, compared to currently used thermo-optic modulation in the TriPleX platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.