Pseudomonas putida S12 is inherently solvent-tolerant and constitutes a promising platform for biobased production of aromatic compounds and biopolymers. The megaplasmid pTTS12 of P. putida S12 carries several gene clusters involved in solvent tolerance and the removal of this megaplasmid caused a significant reduction in solvent tolerance. In this study, we succeeded in restoring solvent tolerance in the plasmid-cured P. putida S12 using adaptive laboratory evolution (ALE), underscoring the innate solvent-tolerance of this strain. Whole genome sequencing identified several single nucleotide polymorphisms (SNPs) and a mobile element insertion enabling ALE-derived strains to survive and sustain growth in the presence of a high toluene concentration (10% (vol/vol)). Mutations were identified in an RND efflux pump regulator arpR, resulting in constitutive upregulation of the multifunctional efflux pump ArpABC. SNPs were also found in the intergenic region and subunits of ATP synthase, RNA polymerase subunit β’, global two-component regulatory system (GacA/GacS) and a putative AraC-family transcriptional regulator Afr. Transcriptomic analysis further revealed a constitutive down-regulation of energy consuming activities in ALE-derived strains, such as flagellar assembly, F0F1 ATP synthase, and membrane transport proteins. In summary, constitutive expression of a solvent extrusion pump in combination with high metabolic flexibility enabled the restoration of solvent-tolerance trait in P. putida S12 lacking its megaplasmid. Importance: Sustainable production of high-value chemicals can be achieved by bacterial biocatalysis. However, bioproduction of biopolymers and aromatic compounds may exert stress on the microbial production host and limit the resulting yield. Having a solvent tolerance trait is highly advantageous for microbial hosts used in the biobased production of aromatics. The presence of a megaplasmid has been linked to the solvent tolerance trait of Pseudomonas putida, however, the extent of innate, intrinsic solvent tolerance in this bacterium remained unclear. Using adaptive laboratory evolution, we successfully adapted the plasmid-cured P. putida S12 strain to regain its solvent tolerance. Through these adapted strains, we begin to clarify the causes, origins, limitations, and trade-offs of the intrinsic solvent tolerance in P. putida. This work sheds a light on the possible genetic engineering targets to enhance solvent tolerance in Pseudomonas putida as well as other bacteria.
Pseudomonas putida S12 is intrinsically solvent-tolerant and constitutes a promising platform for biobased production of aromatic compounds and biopolymers. The genome of P. putida S12 consists of a 5.8 Mbp chromosome, and a 580 kbp megaplasmid pTTS12 that carries several gene clusters involved in solvent tolerance. Removal of pTTS12 caused a significant reduction in solvent tolerance. In this study, we succeeded in restoring solvent tolerance in plasmid-cured P. putida S12 using adaptive laboratory evolution (ALE), underscoring the innate solvent-tolerance of this strain. Whole genome sequencing revealed several single nucleotide polymorphisms (SNPs) and a mobile element insertion, enabling ALE-derived strains to survive and sustain growth in the presence of a high toluene concentration (10% v/v). Mutations were identified in an RND efflux pump regulator arpR, resulting in constitutive upregulation of the multifunctional efflux pump ArpABC. SNPs were also found in the intergenic region and subunits of ATP synthase, RNA polymerase subunit B, global two-component regulatory system (GacA/GacS) and a putative AraC-family transcriptional regulator Afr. RNA-seq analysis further revealed a constitutive down-regulation of energy consuming activities in ALE-derived strains, including flagellar assembly, F0F1 ATP synthase, and membrane transport proteins. Out results indicate that constitutive expression of an alternative solvent extrusion pump in combination with high metabolic flexibility ensures restoration of solvent-tolerance in P. putida S12 lacking its megaplasmid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.