Background: Lifestyle and vascular factors have been linked to dementia and Alzheimer’s disease (AD), but the role of dietary fats in the development of dementia is less clear. Methods: Participants were derived from random, population-based samples initially studied in midlife (1972, 1977, 1982, or 1987). Fat intake from spreads and milk products was assessed using a structured questionnaire and an interview. After an average follow-up of 21 years, a total of 1,449 (73%) individuals aged 65–80 years participated in the re-examination in 1998. Altogether 117 persons had dementia. Results: Moderate intake of polyunsaturated fats at midlife decreased the risk of dementia even after adjustment for demographic variables, other subtypes of fats, vascular risk factors and disorders, and apolipoprotein E (ApoE) genotype (OR 0.40, CI 0.17–0.94 for the 2nd quartile vs. 1st quartile), whereas saturated fat intake was associated with an increased risk (OR 2.45, CI 1.10–5.47 for the 2nd quartile). The associations were seen only among the ApoE Ε4 carriers. Conclusions: Moderate intake of unsaturated fats at midlife is protective, whereas a moderate intake of saturated fats may increase the risk of dementia and AD, especially among ApoE Ε4 carriers. Thus, dietary interventions may potentially modify the risk of dementia, particularly among genetically susceptible individuals.
Thickening of the arterial intima and smooth muscle cell (SMC) proliferation remain major problems after vascular surgery and other types of vascular manipulations. We studied the effect of endothelial cell (EC)-specific vascular endothelial growth factor (VEGF) gene transfer on the thickening of the intima using a silicone collar inserted around carotid arteries that acted both as the agent that caused intimal SMC growth and as a reservoir for the transfected gene. The model preserved EC integrity and permitted direct extravascular gene transfer without any intravascular manipulation. Compared to beta-galactosidase (lacZ)-transfected control arteries, plasmid/liposome-mediated VEGF gene transfer significantly reduced intimal thickening 1 week after the gene transfer. Administration to the experimental animals of the nitric oxide (NO) synthase inhibitor L-NAME abolished the difference in intimal thickening between VEGF and lacZ-transfected arteries. Furthermore, VEGF caused NO release from cultured human umbilical vein EC. It is concluded that extravascular VEGF gene transfer attenuates intimal growth and could be useful for the prevention of intimal thickening during vascular surgery. Our results further suggest that VEGF may reduce SMC proliferation via a mechanism that involves VEGF-induced NO production from the endothelium.
Arterial gene transfer offers a promising new approach for the treatment of vascular disorders. However, no data are available about the gene transfer efficiency in human arteries in vivo. The aim of this study was to evaluate the safety and feasibility of catheter-mediated adenoviral gene transfer in human peripheral arteries. Ten patients (8 females, 2 males, mean age 80 +/- 8 years) suffering from chronic critical leg ischemia with a prior decision for amputation were recruited in the study. Gene transfer was performed in eight patients in conjunction with a conventional percutaneous transluminal angioplasty, using a perfusion coil balloon catheter. Two patients served as controls. Increasing concentrations of replication-deficient adenoviruses (titers from 1 x 10(8) to 4 x 10(10) PFU) containing a nuclear-targeted beta-galactosidase marker gene were administered into the arteries over 10 min via the catheter. Amputations were performed 20 to 51 hr after the procedures and gene transfer efficiency was evaluated in the transduced arteries using X-Gal staining for beta-galactosidase activity. Beta-galactosidase gene transfer was well tolerated and no adverse tissue responses or systemic complications were observed in any of the patients. Gene transfer was successful in six of the eight patients. Gene transfer efficiency varied between 0.04 and 5.0% of all arterial cells. Transgene expression was detected in smooth muscle cells, endothelial cells, and macrophages and in tunica adventitia. However, transgene activity was not evenly distributed in the arterial wall and no transgene activity was found beneath advanced atherosclerotic lesions. The safety and feasibility of in vivo gene transfer by adenoviral vectors to human peripheral arteries were established. Although improvements are still required in gene transfer efficiency, these findings suggest that adenoviruses can be used to deliver therapeutically active genes into human arteries.
Adenovirus-mediated VEGF-C gene transfer may be useful for the treatment of postangioplasty restenosis and vessel wall thickening after vascular manipulations.
Blood vessels are among the easiest targets for gene therapy. However, no data are available about the safety and feasibility of intracoronary gene transfer in humans. We studied the safety and efficacy of catheter-mediated vascular endothelial growth factor (VEGF) plasmid/liposome (P/L) gene transfer in human coronary arteries after percutaneous translumenal coronary angioplasty (PTCA) in a randomized, double-blinded, placebo-controlled study. The optimized angioplasty/gene delivery method was previously shown to lead to detectable VEGF gene expression in human peripheral arteries as analyzed from amputated leg samples. Gene transfer to coronary arteries was done with a perfusion-infusion catheter, using 1000 microg of VEGF or beta-galactosidase plasmid complexed with 1000 microl of DOTMA:DOPE liposomes. Ten patients received VEGF P/L, three patients received beta-galactosidase P/L, and two patients received Ringer lactate. Gene transfer to coronary arteries was feasible and well tolerated. Except for a slight increase in serum C-reative protein in all study groups, no adverse effects or abnormalities in laboratory parameters were detected. No VEGF plasmid or recombinant VEGF protein was present in the systemic circulation after the gene transfer. In control angiography 6 months later, no differences were detected in the degree of coronary stenosis between treatment and control groups. We conclude that catheter-mediated intracoronary gene transfer performed after angioplasty is safe and well tolerated and potentially applicable for the prevention of restenosis and myocardial ischemia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.