Recent years have witnessed a steep increase in studies on the diverse roles of neuronal cation-chloride cotransporters (CCCs). The versatility of CCC gene transcription, posttranslational modification, and trafficking are on par with what is known about ion channels. The cell-specific and subcellular expression patterns of different CCC isoforms have a key role in modifying a neuron's electrophysiological phenotype during development, synaptic plasticity, and disease. While having a major role in controlling responses mediated by GABA(A) and glycine receptors, CCCs also show close interactions with glutamatergic signaling. A cross-talk among CCCs and trophic factors is important in short-term and long-term modification of neuronal properties. CCCs appear to be multifunctional proteins that are also involved in shaping neuronal structure at various stages of development, from stem cells to synaptogenesis. The rapidly expanding work on CCCs promotes our understanding of fundamental mechanisms that control brain development and functions under normal and pathophysiological conditions.
Summary
A delineation of the molecular basis of synapse development is crucial for understanding brain function. Co-cultures of neurons with transfected fibroblastoid cells have been used to demonstrate the synapse-promoting activity of candidate molecules. Here, we performed an unbiased expression screen for synaptogenic proteins in the co-culture assay using custom-made full-length cDNA libraries. Re-isolation of NGL-3/LRRC4B and neuroligin-2 accounts for a minority of positive clones, indicating that current understanding of mammalian synaptogenic proteins is far from complete. We identify LRRTM1 as a novel transmembrane protein capable of inducing presynaptic differentiation in contacting axons. All four LRRTM family members exhibit synaptogenic activity, LRRTMs localize to excitatory synapses, and artificially-induced clustering of LRRTMs mediates postsynaptic differentiation in dendrites. We generate LRRTM1 -/- mice and reveal altered distribution of the vesicular glutamate transporter VGLUT1, confirming an in vivo synaptic function. These results suggest a prevalence of LRR domain proteins in trans-synaptic signaling and provide a cellular basis for the recently reported linkage of LRRTM1 to handedness and schizophrenia.
Pathophysiological activity and various kinds of traumatic insults are known to have deleterious long-term effects on neuronal Cl− regulation, which can lead to a suppression of fast postsynaptic GABAergic responses. Brain-derived neurotrophic factor (BDNF) increases neuronal excitability through a conjunction of mechanisms that include regulation of the efficacy of GABAergic transmission. Here, we show that exposure of rat hippocampal slice cultures and acute slices to exogenous BDNF or neurotrophin-4 produces a TrkB-mediated fall in the neuron-specific K+–Cl− cotransporter KCC2 mRNA and protein, as well as a consequent impairment in neuronal Cl− extrusion capacity. After kindling-induced seizures in vivo, the expression of KCC2 is down-regulated in the mouse hippocampus with a spatiotemporal profile complementary to the up-regulation of TrkB and BDNF. The present data demonstrate a novel mechanism whereby BDNF/TrkB signaling suppresses chloride-dependent fast GABAergic inhibition, which most likely contributes to the well-known role of TrkB-activated signaling cascades in the induction and establishment of epileptic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.