Properties of the intestinal digestion of the dietary phytosterols, cholesterol and cholestanol, and the mechanisms by which phytosterols inhibit the intestinal absorption of cholesterol in healthy human subjects are poorly known. We have studied the hydrolysis of dietary plant sterol and stanol esters and their subsequent micellar solubilization by determining their concentrations in micellar and oil phases of the jejunal contents. Two liquid formulas with low (formula 1) and high (formula 2) plant stanol concentrations were infused via a nasogastric tube to the descending duodenum of 8 healthy human subjects, and intestinal contents were sampled for gas-liquid chromatographic sterol analysis 60 cm more distally. During the duodenal transit, phytosterol esters were hydrolyzed. This was especially profound for sitostanol, as its esterified fraction per milligram of sitosterol decreased 80% (P < 0.001) in formula 1 and 61% (P < 0.001) in formula 2. Contrary to that, esterified fraction of cholesterol per milligram of sitosterol was increased fourfold (P < 0.001) in formula 1 and almost sixfold (P < 0.001) in formula 2, whereas that of cholestanol remained unchanged. Percentages of esterified sterols and stanols in total intestinal fluid samples were higher after the administration of formula 2 than of formula 1. Esterified cholesterol and stanols accumulated in the oil phase, and free stanols replaced cholesterol in the micellar phase. At high intestinal plant stanol concentrations, cholesterol looses its micellar solubility possibly by replacement of its free fraction in the micellar phase by hydrolyzed plant stanols, which leads to a decreased intestinal absorption of cholesterol.
In colectomized patients, effective inhibition of cholesterol absorption and lowering of serum cholesterol concentrations and plant sterol ratios occurs within 1 d of the start of consumption of stanol esters. The composition of major bile lipids is unchanged, indicating that gallstone formation is unlikely. Small amounts of plant stanols are recovered in serum and bile during consumption of stanol esters but effectively are secreted through bile, thereby balancing the intake-induced increase in their absorption.
Serum concentrations and metabolism of cholesterol were studied in vegetarians basally and during a dietary cholesterol load. Cholesterol absorption efficiency was normal and synthesis was slightly enhanced, even though serum cholesterol precursors were not increased. The serum concentrations of total and low-density-lipoprotein cholesterol were decreased proportionally to the reduced intake and absolute absorption of cholesterol. Fecal plant sterols were negatively correlated with the absorption efficiency of cholesterol and positively with fecal sterols and cholesterol synthesis, suggesting interference of high plant sterol intakes with cholesterol absorption. Cholesterol saturation and bile acid composition of the bile were not changed. The increased serum plant sterol-cholesterol ratios were positively related to the intake and negatively to the biliary secretion of plant sterols. Cholesterol feeding increased absolute cholesterol absorption and serum concentrations of total and low-density-lipoprotein cholesterol, did not change absorption efficiency or synthesis of cholesterol, but increased fecal cholestanol excretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.