We present a critical evaluation of the force balance approach in predicting the departure of rapidly growing bubbles from a boiling surface. To this end, we conduct separate effect bubble growth experiments in a carefully controlled environment. We use high-speed video to quantify experimentally all the external forces acting on a growing bubble through the profile of the liquid-vapor interface. Our experimental data show that the momentum conservation equation is always rigorously satisfied, as it should, if the various forces are precisely quantified. However, based on our analysis and our observations, we come to the conclusion that force balance models cannot be either robust or accurate for the purpose to predict bubble departure. They are not robust because the rate of change of the bubble momentum, i.e., the key quantity that force balance models aim at evaluating as the sum of the external forces, is orders of magnitude smaller than each of the force terms in the momentum conservation equation throughout the entire bubble life cycle. Thus, the slightest error on one of the external forces leads to very different predictions for bubble departure. The approach is also not accurate because the analytical expressions used to estimate the external forces are riddled with questionable assumptions (e.g., on the bubble growth rate, added mass coefficient, contact line length, and contact angle) and uncertainties that are, once again, orders of magnitude larger than the rate of change of the bubble momentum itself.
We present the results of a study aimed at investigating the effects of electric fields on quasi-static bubble departure dynamics, during pool boiling of perfluorohexane (FC-72) in microgravity conditions. Analysis was performed through an alternative formulation of the bubble momentum balance, in which the contribution of non-uniform electric stress distributions at the bubble interface can be quantified through high-speed video measurements, without having to numerically solve the laws of electrostatics. Data used in this study were obtained in the scope of the Multiscale Boiling Project (RUBI), which included advanced single bubble growth experiments performed aboard the International Space Station. Our results confirm that bubble departure counterintuitively begins before the force resulting from electric stresses starts to pull the bubble up from the wall. When this occurs, it is shown that the shrinking process of the contact line accelerates, in agreement with known theoretical results. It is concluded that the electric force is essentially determined by the electric stress distribution at the bubble cap above the contact area. Furthermore, we show that the electric stress at the bubble interface is also responsible for the increase of bubble internal overpressure, which explains the early departure of the bubble while increasing the intensity of the electric field. The results of this study provide an important step in achieving a more comprehensive understanding of the bubble behavior at the heated surface in presence of an electric field, which is essential to optimally design electrodes and two-phase heat transfer devices for future space applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.