Fibro-adipose substitution has a double detrimental effect on the myocardium in arrhythmogenic cardiomyopathy (ACM), worsening arrhythmogenesis by creating a non-conductive substrate, and causing ventricular dysfunction leading to heart failure. Notably, to-date no etiological therapy is available. This work introduces, for the first time, the stromal cardiac compartment as a key player in ACM ventricular adipose substitution: we demonstrated that cardiac human mesenchymal stromal cells undergo adipogenic differentiation both in ACM explanted hearts and in culture through a PKP2-dependent mechanism. Cardiac mesenchymal stromal cells constitute a suitable cellular platform for future mechanistic studies and a potential target for future therapies.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Diagnosis of Arrhythmogenic CardioMyopathy (ACM) is challenging and often late after disease onset. No circulating biomarkers are available to date. Given their involvement in several cardiovascular diseases, plasma microRNAs warranted investigation as potential non-invasive diagnostic tools in ACM. We sought to identify circulating microRNAs differentially expressed in ACM with respect to Healthy Controls (HC) and Idiopathic Ventricular Tachycardia patients (IVT), often in differential diagnosis. ACM and HC subjects were screened for plasmatic expression of 377 microRNAs and validation was performed in 36 ACM, 53 HC, 21 IVT. Variable importance in data partition was estimated through Random Forest analysis and accuracy by Receiver Operating Curves. Plasmatic miR-320a showed 0.53 ± 0.04 fold expression difference in ACM vs. HC (p < 0.01). A similar trend was observed when comparing ACM (n = 13) and HC (n = 17) with athletic lifestyle, a ACM precipitating factor. Importantly, ACM patients miR-320a showed 0.78 ± 0.05 fold expression change vs. IVT (p = 0.03). When compared to non-invasive ACM diagnostic parameters, miR-320a ranked highly in discriminating ACM vs. IVT and it increased their accuracy. Finally, miR-320a expression did not correlate with ACM severity. Our data suggest that miR-320a may be considered a novel potential biomarker of ACM, specifically useful in ACM vs. IVT differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.