Shape memory polymers (SMPs) represent a materials class capable of recovering their initial shape, when submitted to deformations, through an external stimulus. This paper focuses on a Shape Memory Thermoplastic Polyurethane (SMPU), characterized by a one-way shape memory effect (SME) activated by temperature. The material was characterized by Differential Scanning Calorimetry (DSC) to find transition temperature; then, it was manufactured by an injection molding machine to perform a campaign of characterization tests. Thermomechanical tests were conducted varying the prescribed strain (up to 25%, 50%, and 80%), imposed at both different strain rates ([Formula: see text], [Formula: see text], and [Formula: see text] s−1), and temperatures (50°C, 60°C, and 70°C); the results were investigated in terms of shape fixity and shape recovery ratios. An excellent memory capability was observed for all the tested conditions; otherwise, the shape recoverability is strongly influenced by all investigated parameters, especially by the strain rate, resulted to be the most effective one. In fact, the shape recovery ratio can increase as much as 20%, when the strain rate is increased from [Formula: see text] to [Formula: see text] s−1. An opposite effect was observed with the variation of prescribed strain and temperature, the increase of which reduces the ability of the material to return to its original shape.
Shape Memory Polymers (SMPs) are materials capable of changing their primary shape to a secondary shape thanks to the so called Shape Memory Effect (SME) phenomenon. The shape-shifting is achieved through the action of an external stimulus, such as heat, electricity, pH, etc. In this paper, experiments on a thermally actuated thin film of a Shape Memory Thermoplastic Polyurethane (SMPU) were performed to calibrate the parameters of a constitutive model which accounts the rubbery/glassy phase transition mechanism behind the shape memory behaviour. In particular, thermomechanical uniaxial tensile tests have been carried out in order to the Young modulus and Poisson’s ratio above/under glass transition temperature and the fixity/recovery ratio. Additionally, the hydraulic bulge test (HBT) in a thermally controlled loading/unloading cycle was used to study the behaviour of the SME at large strains under equi-biaxial stress state. The corresponding outcomes were, therefore, employed to validate the results of the initial calibration by means of a Finite Element (FE) simulation of the HBT.
In the last few years, Fused Filament Fabrication is growing in the industrial field for the manufacture of final products by using new materials with high mechanical performances. Among those, one of the strongest is Carbon-PA. This is a composite material made by Nylon thermoplastic matrix filled with short carbon fibers reinforces. The aim of this work is to investigate its mechanical properties in static and dynamic conditions. Cylindrical specimens were produced by extruding the material in the three main printing directions. Then, uniaxial quasi-static and dynamic compression tests have been performed to evaluate its strain rate sensitivity. Dynamic tests have been carried out through a direct Split Hopkinson Bar setup with a pulse-shaping technique. The results show a compression behaviour dependent on the printing direction and strain rate. The behaviour of Carbon-PA was different between static and dynamic condition, passing from ductile to brittle. Moreover, a tomography analysis was carried out on the samples to evaluate the voids distribution. Graphic abstract
Tensegrity structures are interesting elements that can be used to create innovative building components. In this work, the deformation behavior of a new type of tensegrity floor (patent n. 0001426973) was investigated through image analysis and photogrammetry, using stereoscopic algorithms. The main innovation of the proposed tensegrity floor is the structural cooperation between glass tiles and steel components, obtained using suitable adhesive joints. In order to evaluate the deformation of the floor under different loading conditions a non-contact measurement system was developed and validated on a scale prototype of the floor. The used method is a stereoscopic optical technique based on the grid method, the validation was performed comparing the measured displacement with the one measured in the same floor with linear displacement sensors. The stereoscopic images were processed with Matlab®, furthermore, a combination of interpolation algorithms were employed to generate the full-field map of the displacement. Two configurations of the floor (with and without the adhesive joints) and three loading conditions were investigated. The analysis demonstrates that the adhesive joints produce a reduction of the overall deflection of the floor of about 60%, falling within the admissible values established by Italian building code. The measurement system is reasonably accurate and can be used in future applications where linear transducers cannot be installed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.