Hybrid quantum-classical systems make it possible to utilize existing quantum computers to their fullest extent. Within this framework, parameterized quantum circuits can be thought of as machine learning models with remarkable expressive power. This Review presents components of these models and discusses their application to a variety of data-driven tasks such as supervised learning and generative modeling. With experimental demonstrations carried out on actual quantum hardware, and with software actively being developed, this rapidly growing field could become one of the first instances of quantum computing that addresses real world problems.
We present a first-principles computational approach to calculate thermoelectric transport coefficients via the exact solution of the linearised Boltzmann transport equation, also including the effect of non-equilibrium phonon populations induced by a temperature gradient. We use density functional theory and density functional perturbation theory for an accurate description of the electronic and vibrational properties of a system, including electron-phonon interactions; carriers' scattering rates are computed using standard perturbation theory. We exploit Wannier interpolation (both for electronic bands and electron-phonon matrix elements) for an efficient sampling of the Brillouin zone, and the solution of the Boltzmann equation is achieved via a fast and stable conjugate gradient scheme. We discuss the application of this approach to n-doped silicon. In particular, we discuss a number of thermoelectric properties such as thermal and electrical conductivities of electrons, Lorenz number and Seebeck coefficient, including the phonon drag effect, in a range of temperatures and carrier concentrations. This approach gives results in good agreement with experimental data and provides a detailed characterization of the nature and the relative importance of the individual scattering mechanisms. Moreover, the access to the exact solution of the Boltzmann equation for a realistic system provides a direct way to assess the accuracy of different flavours of relaxation time approximation, as well as of models that are popular in the thermoelectric community to estimate transport coefficients.
Current gate-based quantum computers have the potential to provide a computational advantage if algorithms use quantum hardware efficiently. To make combinatorial optimization more efficient, we introduce the Filtering Variational Quantum Eigensolver (F-VQE) which utilizes filtering operators to achieve faster and more reliable convergence to the optimal solution. Additionally we explore the use of causal cones to reduce the number of qubits required on a quantum computer. Using random weighted MaxCut problems, we numerically analyze our methods and show that they perform better than the original VQE algorithm and the Quantum Approximate Optimization Algorithm (QAOA). We also demonstrate the experimental feasibility of our algorithms on a Honeywell trapped-ion quantum processor.
Combinatorial optimization models a vast range of industrial processes aiming at improving their efficiency. In general, solving this type of problem exactly is computationally intractable. Therefore, practitioners rely on heuristic solution approaches. Variational quantum algorithms are optimization heuristics that can be demonstrated with available quantum hardware. In this case study, we apply four variational quantum heuristics running on IBM’s superconducting quantum processors to the job shop scheduling problem. Our problem optimizes a steel manufacturing process. A comparison on 5 qubits shows that the recent filtering variational quantum eigensolver (F-VQE) converges faster and samples the global optimum more frequently than the quantum approximate optimization algorithm (QAOA), the standard variational quantum eigensolver (VQE), and variational quantum imaginary time evolution (VarQITE). Furthermore, F-VQE readily solves problem sizes of up to 23 qubits on hardware without error mitigation post processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.