A quantitative procedure for the robustness and progressive collapse assessment of reinforced concrete (RC) frames under blast load scenarios is presented. This procedure is supported by multilevel numerical models, including nonlinear numerical analyses of the structural response of both local (i.e., response of the single structural element to the blast load) and global levels (i.e., response of the structural system to the blast-induced damage). Furthermore, the procedure is applied to a 2D RC frame structure. The novelty of the proposed procedure is that the global robustness is evaluated by the so-called “damage-presumption approach” where the considered damages are defined both in typology and extension depending on the blast scenario occurring at the local level. The dedicated local response analysis of a specified blast scenario leads to the proper definition of the so-called “blast-scenario dependent robustness curves”.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.