There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-β offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-β, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases.
Allergic diseases are considered the epidemics of the twentieth century estimated to affect more than 30% of the population in industrialized countries with a still increasing incidence. During the past two decades, the application of molecular biology allowed cloning, production and characterization of hundreds of recombinant allergens. In turn, knowledge about molecular, chemical and biologically relevant allergens contributed to increase our understanding of the mechanisms underlying IgE-mediated type I hypersensitivity reactions. It has been largely demonstrated that fungi are potent sources of allergenic molecules covering a vast variety of molecular structures including enzymes, toxins, cell wall components and phylogenetically highly conserved cross-reactive proteins. Despite the large knowledge accumulated and the compelling evidence for an involvement of fungal allergens in the pathophysiology of allergic diseases, fungi as a prominent source of allergens are still largely neglected in basic research as well as in clinical practice. This review aims to highlight the impact of fungal allergens with focus on asthma and atopic dermatitis.Allergy is a disease with many faces that can affect different organs like upper and lower respiratory tract, eyes, intestinal tract and the skin. Depending on the affected organ, allergic symptoms manifest as allergic rhinitis (1), allergic asthma (2), IgE-associated atopic dermatitis (3), food allergy (4) or insect venom allergy (5), to mention only the most important ones. The common hallmark of allergic diseases is a switch to the production of allergen-specific IgE raised against normally innocuous environmental allergens (6) that, in special cases, might also cross-react with self-antigens (7,8). At this asymptomatic stage, the individual is sensitized to a given allergenic source due to the presence of allergen-specific IgE in serum, a condition also called 'atopy'. Detection of allergen-specific IgE is considered as a specific biomarker for the atopic state in clinical practice, which allows in most cases a linkage of a symptom to a particular allergen exposure (9). Measurement of allergen-specific IgE antibodies in serum is normally performed with fully automated devices (10) and used to confirm sensitization to a particular allergen in support of a history-based clinical diagnosis of allergy or a symptom-based suspicion. In sensitized (atopic) individuals, however, re-exposure to the offending allergen induces crosslinking of the high-affinity receptor FceRI-bound allergenspecific IgE on effector cells and, thus, immediate release of anaphylactogenic mediators (11). Although the mechanisms leading to allergic reactions (12, 13) and the sources of exposure are quite well known, our knowledge about the repertoire of molecular structures involved in the pathogenesis of allergic reactions is still rudimentary (14) even if it is well recognized that only a minor fraction of the myriad of proteins to which humans are exposed provokes allergic reactions. Bioinfo...
Fruiting body lectins are ubiquitous in higher fungi and characterized by being synthesized in the cytoplasm and up-regulated during sexual development. The function of these lectins is unclear. A lack of phenotype in sexual development upon inactivation of the respective genes argues against a function in this process. We tested a series of characterized fruiting body lectins from different fungi for toxicity towards the nematode Caenorhabditis elegans, the mosquito Aedes aegypti and the amoeba Acanthamoeba castellanii. Most of the fungal lectins were found to be toxic towards at least one of the three target organisms. By altering either the fungal lectin or the glycans of the target organisms, or by including soluble carbohydrate ligands as competitors, we demonstrate that the observed toxicity is dependent on the interaction between the fungal lectins and specific glycans in the target organisms. The toxicity was found to be dose-dependent such that low levels of lectin were no longer toxic but still led to food avoidance by C. elegans. Finally, we show, in an ecologically more relevant scenario, that challenging the vegetative mycelium of Coprinopsis cinerea with the fungal-feeding nematode Aphelenchus avenae induces the expression of the nematotoxic fruiting body lectins CGL1 and CGL2. Based on these findings, we propose that filamentous fungi possess an inducible resistance against predators and parasites mediated by lectins that are specific for glycans of these antagonists.
The development of vaccines inducing efficient CD8+ T cell responses is the focus of intense research. Dendritic cells (DCs) expressing the XCR1 chemokine receptor, also known as CD103+ or CD8α+ DCs, excel in the presentation of extracellular Ags to CD8+ T cells. Because of its high numbers of DCs, including XCR1+ DCs, the skin dermis is an attractive site for vaccine administration. By creating laser-generated micropores through the epidermis, we targeted a model protein Ag fused to XCL1, the ligand of XCR1, to dermal XCR1+ DCs and induced Ag-specific CD8+ and CD4+ T cell responses. Efficient immunization required the emigration of XCR1+ dermal DCs to draining lymph nodes and occurred irrespective of TLR signaling. Moreover, a single intradermal immunization protected mice against melanoma tumor growth in prophylactic and therapeutic settings, in the absence of exogenous adjuvant. The mild inflammatory milieu created in the dermis by skin laser microporation itself most likely favored the development of potent T cell responses in the absence of exogenous adjuvants. The existence of functionally equivalent XCR1+ dermal DCs in humans should permit the translation of laser-assisted intradermal delivery of a tumor-specific vaccine targeting XCR1+ DCs to human cancer immunotherapy. Moreover, considering that the use of adjuvants in vaccines is often associated with safety issues, the possibility of inducing protective responses against melanoma tumor growth independently of the administration of exogenous adjuvants should facilitate the development of safer vaccines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.