Metabolomics is an area of intriguing and growing interest. Since the late 1990s, when the first Omic applications appeared to study metabolite's pool (“metabolome”), to understand new aspects of the global regulation of cellular metabolism in biology, there have been many evolutions. Currently, there are many applications in different fields such as clinical, medical, agricultural, and food. In our opinion, it is clear that developments in metabolomics analysis have also been driven by advances in mass spectrometry (MS) technology. As natural complex products (NCPs) are increasingly used around the world as medicines, food supplements, and substance‐based medical devices, their analysis using metabolomic approaches will help to bring more and more rigor to scientific studies and industrial production monitoring. This review is intended to emphasize the importance of metabolomics as a powerful tool for studying NCPs, by which significant advantages can be obtained in terms of elucidation of their composition, biological effects, and quality control. The different approaches of metabolomic analysis, the main and basic techniques of multivariate statistical analysis are also briefly illustrated, to allow an overview of the workflow associated with the metabolomic studies of NCPs. Therefore, various articles and reviews are illustrated and commented as examples of the application of MS‐based metabolomics to NCPs.
UHPLC-qToF analysis is here reported as a modern and reliable spectrometric technique, for a more accurate evaluation of the biodegradation of pharmaceutical formulations that should be considered as a complex...
Drugs are indispensable products with incontrovertible benefits to human health and lifestyle. However, due to their overuse and improper disposal, unwanted residues of active pharmaceutical ingredients (APIs) have been found in different compartments of the environment and now are considered as contaminants of emerging concern (CECs). Therefore, they are very likely to have a boomerang effect on human health, because they can enter into the food cycle. In the current legislation framework, one of the tests first used to evaluate biodegradation of APIs as well as chemical compounds is the ready biodegradability test (RBT). This test can be performed according to a series of protocols prepared by Organization for Economic Co‐operation and Development (OECD) and usually is carried out on pure compounds. RBTs, largely used due to their relatively low cost, perceived standardization, and straightforward implementation and interpretation, are known to have a number of well‐documented limitations. In this work, following a recently reported approach, we propose to improve the evaluation of the RBT results applying advanced analytical techniques based on mass spectrometry, not only to the APIs but also to complex formulated products, as the biodegradability can potentially be affected by the formulation. We evaluated the ready biodegradability of two therapeutic products, Product A—a drug based on Metformin—and Product B—Metarecod a natural substance‐based medical device—through the acquisition of the fingerprint by ultra‐high‐performance chromatograph coupled to a quadrupole time of flight (UHPLC‐qToF) of samples coming from the RBT OECD 301F. Untargeted and targeted evaluation confirmed the different behavior of the two products during the respirometry‐manometric test, which showed a difficulty of the Metformin‐based drug to come back in the life cycle, whereas Metarecod resulted ready biodegradable. The positive results of this research will hopefully be useful in the future for a better evaluation of the risk/benefit ratio of APIs extended to the environment.
The evolution of the regulatory framework for medical devices in the EU (Reg 2017/745) has opened the study of complex systems emerging properties. This makes necessary to identify new analytical approaches able of characterizing complex natural substrates as completely as possible. Therefore, omics approaches and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.