Neuromorphic computing architectures enable the dense co-location of memory and processing elements within a single circuit. This co-location removes the communication bottleneck of transferring data between separate memory and computing units as in standard von Neuman architectures for data-critical applications including machine learning. The essential building blocks of neuromorphic systems are non-volatile synaptic elements such as memristors. Key memristor properties include a suitable non-volatile resistance range, continuous linear resistance modulation and symmetric switching. In this work, we demonstrate voltage-controlled, symmetric and analog potentiation and depression of a ferroelectric Hf 0.57 Zr 0.43 O 2 (HZO) field effect transistor (FeFET) with good linearity. Our FeFET operates with a low writing energy (fJ) and fast programming time (40 ns). Retention measurements have been done over 4-bits depth with low noise (1 %) in the tungsten oxide (WO x ) read out channel. By adjusting the channel thickness from 15nm to 8nm, the on/off ratio of the FeFET can be engineered from 1 % to 200 % with an on-resistance ideally >100 kΩ, depending on the channel geometry. The device concept is using earth-abundant materials, and is 1 arXiv:2001.06475v1 [cs.ET] 17 Jan 2020 compatible with a back end of line (BEOL) integration into complementary metal-oxidesemiconductor (CMOS) processes. It has therefore a great potential for the fabrication of high density, large-scale integrated arrays of artificial analog synapses.Keywords ferroelectric switching, hafnium zirconium oxide, tungsten oxide, BEOL, ferroelectric field-effect transistor, memristor
We report on the stabilization of ferroelectric HfxZr1−xO2 (HZO) films crystallized using a low thermal budget millisecond flash lamp annealing technique. Utilizing a 120 s 375 °C preheat step combined with millisecond flash lamp pulses, ferroelectric characteristics can be obtained which are comparable to that achieved using a 300 s 650 °C rapid thermal anneal. X-ray diffraction, capacitance voltage, and polarization hysteresis analysis consistently point to the formation of the ferroelectric phase of HZO. A remanent polarization (Pr) of ∼21 μC/cm2 and a coercive field (Ec) of ∼1.1 MV/cm are achieved in 10 nm thick HZO layers. Such a technique promises a new alternative solution for low thermal budget formation of ferroelectric HZO films.
Ohmic, memristive synaptic weights are fabricated with a back‐end‐of‐line compatible process, based on a 3.5 nm HfZrO4 thin film crystallized in the ferroelectric phase at only 400 °C. The current density is increased by three orders of magnitude compared to the state‐of‐the‐art. The use of a metallic oxide interlayer, WOx, allows excellent retention (only 6% decay after 106 s) and endurance (1010 full switching cycles). The On/Off of 7 and the small device‐to‐device variability (<5%) make them promising candidates for neural networks inference. The synaptic functionality for online learning is also demonstrated: using pulses of increasing (resp. constant) amplitude and constant (resp. increasing) duration, emulating spike‐timing (resp. spike‐rate) dependent plasticity. Writing with 20 ns pulses only dissipate femtojoules. The cycle‐to‐cycle variation is below 2%. The training accuracy (MNIST) of a neural network is estimated to reach 92% after 36 epochs. Temperature‐dependent experiments reveal the presence of allowed states for charge carriers within the bandgap of hafnium zirconate. Upon polarization switching, the screening of the polarization by mobile charges (that can be associated with oxygen vacancies and/or ions) within the ferroelectric layer modifies the energy profile of the conduction band and the bulk transport properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.