While digital predistortion (DPD) usually targets only the linearity performance of the radio–frequency (RF) power amplifier (PA), this work addresses more than a single PA performance metric exploiting a multi-objective optimization approach. We present a predistorer learning procedure based on a constrained optimization algorithm that maximizes the RF output power, while guaranteeing a prescribed linearity level, i.e., a maximum normalized mean square error (NMSE) or adjacent-channel power ratio (ACPR). Experimental results on a Gallium Nitride (GaN) PA show that the proposed approach outperforms the classical indirect learning architecture (ILA), yet using the same predistorter structure with predetermined nonlinearity and memory orders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.