Polarization-based imaging can provide new diagnostic capabilities in clinical and preclinical studies. Various methodologies of increasing complexity have been proposed by different groups in the last 30 years. In this review we focus on the most widely used methods in polarization imaging including co- and cross-polarized-based imaging, Mueller matrix imaging, and polarization sensitive optical coherence tomography, among others. This short primer in optical instrumentation for polarization-based imagery is aimed at readers interested in including polarization in their imaging processes.
The first wave of the COVID-19 pandemic brought about a broader use of masks by both professionals and the general population. This resulted in a severe worldwide shortage of devices and the need to increase import and activate production of safe and effective surgical masks at the national level. In order to support the demand for testing surgical masks in the Italian context, Universities provided their contribution by setting up laboratories for testing mask performance before releasing products into the national market. This paper reports the effort of seven Italian university laboratories who set up facilities for testing face masks during the emergency period of the COVID-19 pandemic. Measurement set-ups were built, adapting the methods specified in the EN 14683:2019+AC. Data on differential pressure (DP) and bacterial filtration efficiency (BFE) of 120 masks, including different materials and designs, were collected over three months. More than 60% of the masks satisfied requirements for DP and BFE set by the standard. Masks made of nonwoven polypropylene with at least three layers (spunbonded–meltblown–spunbonded) showed the best results, ensuring both good breathability and high filtration efficiency. The majority of the masks created with alternative materials and designs did not comply with both standard requirements, resulting in suitability only as community masks. The effective partnering between universities and industries to meet a public need in an emergency context represented a fruitful example of the so-called university “third-mission”.
During the coronavirus disease 2019 (COVID-19) pandemic, scientific authorities strongly suggested the use of face masks (FMs). FM materials (FMMs) have to satisfy the medical device biocompatibility requirements as indicated in the technical standard EN ISO 10993-1:2018. The biologic evaluation must be confirmed by in vivo tests to verify cytotoxicity, sensitisation, and skin irritation. Some of these tests require an extensive period of time for their execution, which is incompatible with an emergency situation. In this study, we propose to verify the safety of FMMs combining the assessment of 3-[4,5-dimethylthiazolyl-2]-2,5-diphenyltetrazolium bromide (MTT) with quantification of nitric oxide (NO) and interleukin-6 (IL-6), as predictive markers of skin sensitisation or irritation based on human primary fibroblasts. Two hundred and forty-two FMMs were collected and classified according to spectrometer IR in polypropylene, paper, cotton, polyester, polyethylene terephthalate, 3-dimensional printing, and viscose. Of all FMMs tested, 50.8% passed all the assays, 48% failed at least one, and only 1.2% failed all. By a low cost, rapid and highly sensitive multi assays strategy tested on human skin fibroblasts against a large variety of FMMs, we propose a strategy to promptly evaluate biocompatibility in wearable materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.