Many bioinformatics methods have been proposed for reducing the complexity of large gene or protein networks into relevant subnetworks or modules. Yet, how such methods compare to each other in terms of their ability to identify disease-relevant modules in different types of network remains poorly understood. We launched the ‘Disease Module Identification DREAM Challenge’, an open competition to comprehensively assess module identification methods across diverse protein–protein interaction, signaling, gene co-expression, homology and cancer-gene networks. Predicted network modules were tested for association with complex traits and diseases using a unique collection of 180 genome-wide association studies. Our robust assessment of 75 module identification methods reveals top-performing algorithms, which recover complementary trait-associated modules. We find that most of these modules correspond to core disease-relevant pathways, which often comprise therapeutic targets. This community challenge establishes biologically interpretable benchmarks, tools and guidelines for molecular network analysis to study human disease biology.
BackgroundMachine learning algorithms hold potential for improved prediction of all-cause mortality in cardiovascular patients, yet have not previously been developed with high-quality population data. This study compared four popular machine learning algorithms trained on unselected, nation-wide population data from Sweden to solve the binary classification problem of predicting survival versus non-survival 2 years after first myocardial infarction (MI).MethodsThis prospective national registry study for prognostic accuracy validation of predictive models used data from 51,943 complete first MI cases as registered during 6 years (2006–2011) in the national quality register SWEDEHEART/RIKS-HIA (90% coverage of all MIs in Sweden) with follow-up in the Cause of Death register (> 99% coverage). Primary outcome was AUROC (C-statistic) performance of each model on the untouched test set (40% of cases) after model development on the training set (60% of cases) with the full (39) predictor set. Model AUROCs were bootstrapped and compared, correcting the P-values for multiple comparisons with the Bonferroni method. Secondary outcomes were derived when varying sample size (1–100% of total) and predictor sets (39, 10, and 5) for each model. Analyses were repeated on 79,869 completed cases after multivariable imputation of predictors.ResultsA Support Vector Machine with a radial basis kernel developed on 39 predictors had the highest complete cases performance on the test set (AUROC = 0.845, PPV = 0.280, NPV = 0.966) outperforming Boosted C5.0 (0.845 vs. 0.841, P = 0.028) but not significantly higher than Logistic Regression or Random Forest. Models converged to the point of algorithm indifference with increased sample size and predictors. Using the top five predictors also produced good classifiers. Imputed analyses had slightly higher performance.ConclusionsImproved mortality prediction at hospital discharge after first MI is important for identifying high-risk individuals eligible for intensified treatment and care. All models performed accurately and similarly and because of the superior national coverage, the best model can potentially be used to better differentiate new patients, allowing for improved targeting of limited resources. Future research should focus on further model development and investigate possibilities for implementation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12911-017-0500-y) contains supplementary material, which is available to authorized users.
BackgroundMetabolomics is the comprehensive study of a multitude of small molecules to gain insight into an organism's metabolism. The research field is dynamic and expanding with applications across biomedical, biotechnological, and many other applied biological domains. Its computationally intensive nature has driven requirements for open data formats, data repositories, and data analysis tools. However, the rapid progress has resulted in a mosaic of independent, and sometimes incompatible, analysis methods that are difficult to connect into a useful and complete data analysis solution.FindingsPhenoMeNal (Phenome and Metabolome aNalysis) is an advanced and complete solution to set up Infrastructure-as-a-Service (IaaS) that brings workflow-oriented, interoperable metabolomics data analysis platforms into the cloud. PhenoMeNal seamlessly integrates a wide array of existing open-source tools that are tested and packaged as Docker containers through the project's continuous integration process and deployed based on a kubernetes orchestration framework. It also provides a number of standardized, automated, and published analysis workflows in the user interfaces Galaxy, Jupyter, Luigi, and Pachyderm.ConclusionsPhenoMeNal constitutes a keystone solution in cloud e-infrastructures available for metabolomics. PhenoMeNal is a unique and complete solution for setting up cloud e-infrastructures through easy-to-use web interfaces that can be scaled to any custom public and private cloud environment. By harmonizing and automating software installation and configuration and through ready-to-use scientific workflow user interfaces, PhenoMeNal has succeeded in providing scientists with workflow-driven, reproducible, and shareable metabolomics data analysis platforms that are interfaced through standard data formats, representative datasets, versioned, and have been tested for reproducibility and interoperability. The elastic implementation of PhenoMeNal further allows easy adaptation of the infrastructure to other application areas and ‘omics research domains.
Summary We define a disease module as a partition of a molecular network whose components are jointly associated with one or several diseases or risk factors thereof. Identification of such modules, across different types of networks, has great potential for elucidating disease mechanisms and establishing new powerful biomarkers. To this end, we launched the ‘Disease Module Identification (DMI) DREAM Challenge’, a community effort to build and evaluate unsupervised molecular network modularization algorithms. Here, we present MONET, a toolbox providing easy and unified access to the three top-performing methods from the DMI DREAM Challenge for the bioinformatics community. Availability and implementation MONET is a command line tool for Linux, based on Docker and Singularity containers; the core algorithms were written in R, Python, Ada and C++. It is freely available for download at https://github.com/BergmannLab/MONET.git. Supplementary information Supplementary data are available at Bioinformatics online.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.